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GRAPH TERMINOLOGY

What is Node, Edge, and …

How we can store graphs?

…
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GRAPH DEFINITION
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GRAPH DEFINITION

https://Class.vision Graph Neural Network 5

Nodes

Edges

Node Features
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TYPES OF GRAPH
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• Undirected graph

• Directed graph

https://Class.vision Graph Neural Network

https://class.vision/


TYPES OF GRAPH
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• Undirected graph

• Directed graph

A

B

or
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TYPES OF GRAPH

8

• Homogeneous graph

• Heterogeneous graph

Homogeneous Heterogeneous

https://Class.vision Graph Neural Network

https://class.vision/


GRAPH EXAMPLE
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𝐺 = 𝑉, 𝐸, 𝑢

EDGES (Adjacency, Weight) = (A,W)

VERTECIES (NODES)

FEATURE VECTORS

Nodes

Edges

Node Features

Social media accounts

People connection

Age, Gender, …
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GRAPH EXAMPLE
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𝐺 = 𝑉, 𝐸, 𝑢

EDGES (Adjacency, Weight) = (A,W)

VERTECIES (NODES)

FEATURE VECTORS

Nodes

Edges

Node Features

Undirected graph

Directed graph

or
Social media accounts

People connection

Age, Gender, …

Facebook

Instagram
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STORING GRAPH
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3

0

2

1

Homogeneous

Edge list:

Source Node, Target Node
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STORING GRAPH
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3

0

2

1

Homogeneous

Adjacency Matrix:

𝑉 × 𝑉
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STORING GRAPH
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3

0

2

1

Homogeneous

Adjacency Matrix:

We can use weight instead of Boolean!

To show how strong the connection is!
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EDGE FEATURES

14

Nodes

Edges

Node Features

Edge Features
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YOU CAN MODEL COMPLEX SYSTEMS, DEPENDING ON HOW 
YOU CHOOSE TO DEFINE THE GRAPH
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❑Edge type: 

weighted vs binary

❑Edge directionality: 

undirected vs directed

❑Features:

None,  node-based, edge-based

❑Temporal Aspects: 

Features, topology

❑Others: 

Multi-graphs, hypergraphs, complex networks
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GRAPH DEGREE
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a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ
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GRAPH DEGREE
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a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0
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GRAPH DEGREE
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a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

Degree matrix (D) is a diagonal matrix defining number of 

connection per node

𝐷 =

𝟐 0 0 0 0
0 𝟑 0 0 0
0 0 𝟑 0 0
0 0 0 𝟐 0
0 0 0 0 𝟐

Degree matrix shows influence of each node on the 

whole graph
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LAPLACIAN OF GRAPH
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a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

Laplacian matrix (L) is a L = D — A OR L = D — W in weighted matrix

𝐷 =

2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2
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NORMALIZED GRAPH
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a

c

b

e

d
We can decide to show the relation between of the 

nodes, with any of the following matrices:

𝐴, 𝐿, ҧ𝐴, ത𝐿
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GRAPH USAGE
AND APPLICATIONS
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GRAPH DATA IS EVERYWHERE

Medicine/ pharmacy Recommender system Social Networks

Brain cortexAirports connection Traffic map



MOLECULES ARE GRAPHS! 
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A very natural way to represent molecules is as a graph

• Atoms as nodes, bonds as edges 

• Features such as atom type, charge, bond type..
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GNNS FOR MOLECULE CLASSIFICATION 
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Interesting task to predict is, for example, whether the 

molecule is a potent drug 

• Can do binary classification on whether the drug will 

inhibit certain bacteria. (E.coli)

• Train on a curated dataset for compounds where 

response is known. 

https://Class.vision Graph Neural Network
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FOLLOW-UP STUDY 
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• Once trained, the model can be applied to any 

molecule. 

o Execute on a large dataset of known candidate 

molecules. 

o Select the —top-100 candidates from your GNN 

model. 

o Have chemists thoroughly investigate those (after 

some additional filtering). 

• Discover a previously overlooked compound that is a 

highly potent antibiotic! 
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SUCCESS STORY!
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SUCCESS STORY!
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SUCCESS STORY!
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SUCCESS STORY!
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TRAFFIC MAPS ARE GRAPHS! 
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Transportation maps (e.g. the ones found on Google Maps) 

naturally modeled as graphs. 

Nodes could be intersections, and edges could be roads. 

(Relevant node features: road length, current speeds, historical speeds)
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DEEPMIND’S ETA PROBLEM!
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Partition candidate route into super-

segments, sampled proportionally to 

(est.) traffic density.

Run GNN on super-segment graph to 

estimate estimated time of arrival (ETA) 

(graph regression).

https://class.vision/blog/ /گرافی-عصبی-شبکه-ترافیک-مپ-گوگل
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RECOMMENDER SYSTEMS
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A common task on social networks is recommendation.

• Based on a user's preferences, recommend new 

content

• Can leverage existing links as adjacency input to a 

(link-prediction) GNN!

• Major issue: our methods (so far) assume the graph is 

processed all-at- once! (one solution is GraphSAGE)
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GRAPH CHALLENGE 
AND PROBLEMS

33https://Class.vision Graph Neural Network

https://class.vision/


WHY USE GRAPHS? 
WHY NOT JUST USE MLP OR ATTENTION AND LEARN 

“EVERYTHING” END-TO-END?
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PROBLEM: GRAPH DATA IS DIFFERENT
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Challenge 1: Data size and shape It should be Size independent 



PROBLEM: GRAPH DATA IS DIFFERENT
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Challenge 2: Isomorphism It should be Permutation invariance

We cannot feed adjacency matrix to MLP



PROBLEM: GRAPH DATA IS DIFFERENT
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Challenge 3: Grid structure It should be in Non-Euclidean space



OTHER CHALLENGES WITH GRAPH CONVOLUTIONS 
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Desirable properties for a graph convolutional layer: 

❑Computational and storage efficiency (~O(V + E)) 

❑Fixed number of parameters (independent of input size) 

❑Localisation (acts on a local neighbourhood of a node) 

❑Specifying different importances to different neighbours 

❑Applicability to inductive problems.

https://class.vision/blog/%d9%85%d8%b9%d9%86%db%8c-inductive-transductive/


LEARNING IN GRAPH
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REPRESENTATION LEARNING
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𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

GNN

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…



LEARNING IN 
GRAPH REPRESENTATION LEARNING
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LEARNING IN 
GRAPH REPRESENTATION LEARNING
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Model

✓ Node Prediction

(Node-level Prediction)

?



LEARNING IN 
GRAPH REPRESENTATION LEARNING
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Model

✓ Node Prediction

(Node-level Prediction)

✓ Link Prediction

(Edge-level prediction)

?



LEARNING IN 
GRAPH REPRESENTATION LEARNING
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Model

✓ Node Prediction

(Node-level Prediction)

✓ Link Prediction

(Edge-level prediction)

✓ Graph representation

(Graph-level prediction)



WHAT TYPES OF PROBLEMS CAN GNNS SOLVE?
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Unsupervised

• Node, Edge, or Graph clustering

- Use embeddings to find “similar” nodes, edges, or graphs

• Link Prediction

• Graph Generation

Supervised

• Node, Edge, or Graph classification / regression

- Use embeddings to predict based on known data

“A Fair Comparison of Graph Neural Networks for Graph Classification”, ICLR 2020

“Revisiting Graph Neural Networks for Link Prediction” (2020)



LEARNING IN 
GRAPH REPRESENTATION LEARNING
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding



LEARNING IN 
GRAPH REPRESENTATION LEARNING
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Goal: Similarity(u, v) ≈ Similarity(𝑍𝑢, 𝑍𝑣)

𝑆𝐺(u, v) ≈ 𝑆𝑉(𝑍𝑢, 𝑍𝑣)



LEARNING IN 
GRAPH REPRESENTATION LEARNING
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Goal: 𝑆𝐺(u, v) ≈ 𝑆𝑉(𝑍𝑢, 𝑍𝑣)

❑ How to perform Encoding?

❑ What is the meaning of similarity ?



HOW TO ENCODE AND DECODE?
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder



HOW TO ENCODE AND DECODE?
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

𝐷ⅇ𝑐 𝑍𝑢, 𝑍𝑣 = 𝐻𝑜𝑤 𝑠𝑖𝑚𝑚𝑖𝑙𝑎𝑟𝑍𝑢 𝑎𝑛𝑑 𝑍𝑣 𝑎𝑟ⅇ?

Decoder

A positive number to show the similarity

𝑆𝐺(u, v) ≈ 𝑆𝑉(𝑍𝑢, 𝑍𝑣)



HOW TO ENCODE AND DECODE?
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

𝐷ⅇ𝑐 𝑍𝑢, 𝑍𝑣 = 𝐻𝑜𝑤 𝑠𝑖𝑚𝑚𝑖𝑙𝑎𝑟𝑍𝑢 𝑎𝑛𝑑 𝑍𝑣 𝑎𝑟ⅇ?

Decoder

A positive number to show the similarity

Matrix factorization

Look-up table

Random Walk 

Inner product 𝑍𝑢
𝑇𝑍𝑣 

Inner product 𝑍𝑢
𝑇𝑍𝑣

Decode statistic of random walk



DRAWBACKS
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u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

𝐷ⅇ𝑐 𝑍𝑢, 𝑍𝑣 = 𝐻𝑜𝑤 𝑠𝑖𝑚𝑚𝑖𝑙𝑎𝑟𝑍𝑢 𝑎𝑛𝑑 𝑍𝑣 𝑎𝑟ⅇ?

Decoder

A positive number to show the similarity

No parameter sharing: Computationally expensive 

No semantic information: Integration of Feature nodes are difficult

Not Inductive: Cannot predict embedding for unseen data (Inherently Transudative)



DEEP VS SHALLOW
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Older methods (“shallow”, non-neural network models)

Deepwalk, node2vec

Generally fallen out of favor with researchers because:

• No parameter sharing (bad scaling, overfitting)

• Transductive (only work with nodes present during training)

GNNs solve these problems, they can 

✓ Share parameters 

✓ Can generalize to inductive tasks

inductive and transductive!

https://class.vision/blog/%d9%85%d8%b9%d9%86%db%8c-inductive-transductive/


REPRESENTATION LEARNING
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𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

...

Message passing layers



GRAPH CONVOLUTIONAL NETWORK
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A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/pdf/1901.00596.pdf


UNDERSTANDING GRAPH NEURAL NETWORKS
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GNNs were originally based on 2-step message passing

1. Aggregate :

Pass information (the “message”) from a target node’s neighbors to the target node

2. Update:

Update each node’s features based on “message” to form an embedded representation



MESSAGE PASSING
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h = node features / embeddings

ℎ𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝐴𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ℎ𝑣 , ∀ 𝑣 ∈ 𝑁(𝑢)

Aggregate function operates over sets, must be permutation 

invariant or permutation equivariant



MESSAGE PASSING
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h = node features / embeddings

ℎ𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝐴𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ℎ𝑣 , ∀ 𝑣 ∈ 𝑁(𝑢)

Aggregate function operates over sets, must be permutation 

invariant or permutation equivariant

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣



MESSAGE PASSING
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ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

1

2

3

4



MESSAGE PASSING
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…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

1

2

3

4

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4



MESSAGE PASSING
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…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

1

2

3

4

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

𝜎 𝑊𝑠𝑒𝑙𝑓 + 𝑊𝑛𝑒𝑖𝑔ℎ +

= …𝑥3𝑥2𝑥1 𝑥4



MESSAGE PASSING
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ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4



MESSAGE PASSING
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ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4
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…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4



MESSAGE PASSING
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ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1

2

3

4



MESSAGE PASSING
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ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ 
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1

2

3

4

(k+1) (k+1) (k+1) kk

The dimensions can be different

Len(ℎ𝑢
𝑘) ≠ 𝑙ⅇ𝑛(ℎ𝑢

𝑘+1)

✓ The local feature aggregation can be compared to learnable CNN kernels:

https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


MESSAGE PASSING

20XX PRESENTATION TITLE 66

➢ h = node features / embeddings

➢ k = number of hops

Each node’s updated value becomes a weighting of its previous value + a weighting of its neighbor’s values

The choice to sum over neighboring nodes isn’t the only valid choice, other choices include mean, max, 

concatenation, etc.
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❑ Collapse Wself and Wneigh into W by adding self-loops to the adjacency matrix A

This method reduces message passing to relatively simple 

matrix multiplication



THE MEAN-POOLING UPDATE RULE
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❑ Problem: Multiplication by A+I may increase the scale of the output features.

✓ Solution: We need to normalize appropriately:

𝐻(𝑘+1) = 𝜎 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)

𝐻(𝑘+1) = 𝜎 𝐷−1 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

1

𝑁𝑖
𝑊ℎ𝑗

𝑘

We arrive at the mean-pooling update rule: 

which is simple but versatile (common for inductive problems!).



GCN GRAPH CONVOLUTIONAL NETWORK
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“Original” GNN 

(Merkwirth, 2005 +  Scarselli et al., 2009)

GCN 

(Kipf + Welling, 2016)

Normalizes by # of nodes in neighborhood

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

1

𝑁𝑖 𝑁𝑗

𝑊ℎ𝑗
𝑘

Node-wise, this can be written as follows:
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https://www.topbots.com/graph-convolutional-networks/

https://www.topbots.com/graph-convolutional-networks/
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𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘



INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 72

𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘
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𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘
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𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘
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𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘
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1. We miss the feature of the node itself. For example, the first row of the result matrix should 

contain features of node A too.
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1. We miss the feature of the node itself. For example, the first row of the result matrix should 

contain features of node A too.

𝐻(𝑘+1) = 𝜎 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)
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1. We miss the feature of the node itself. For example, the first row of the result matrix should 

contain features of node A too.

2. Instead of sum() function, we need to take the average, or even better, the weighted average of 

neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using 

the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes 

tend to get small aggregate vectors, which may later cause exploding or vanishing 

gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale 

of input data. Thus, we need to normalize these vectors to get rid of the potential issues.
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2. Instead of sum() function, we need to take the average, or even better, the weighted average of 

neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using 

the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes 

tend to get small aggregate vectors, which may later cause exploding or vanishing 

gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale 

of input data. Thus, we need to normalize these vectors to get rid of the potential issues.
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ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

1

𝑁𝑖
𝑊ℎ𝑗

𝑘

𝐻(𝑘+1) = 𝜎 𝐷−1 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)
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• So far, so good!
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• So far, so good!

• Intuitively, it should be better if we treat high and low degree nodes differently.
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The new scaler gives us the “weighted” average. 

What are we doing here is to put more weights on 

the nodes that have low-degree and reduce the 

impact of high-degree nodes.
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ℎ(𝑘+1) = 𝜎 

𝑗∈𝑁𝑖

1

𝑁𝑖 𝑁𝑗

𝑊ℎ𝑗
𝑘
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❑ The number of layers is the farthest distance that node features can travel.

❑ Normally we don’t want to go too far. With 6–7 hops, we almost get the entire graph which 

makes the aggregation less meaningful.



HOW MANY LAYERS SHOULD WE STACK THE GCN?
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GNN VARIANTS
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ℎ𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝐴𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ℎ𝑣 , ∀ 𝑣 ∈ 𝑁(𝑢)
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Source: Graph Neural Networks: A Review of Methods and Applications
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
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𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

3

?

2

?

1

3

?

2

?

1
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𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

3

?

2

?

1

3

?

2

?

1 1

1

0

1

0

msak
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BATCHING WITH GRAPHS
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In the image or language domain:

rescaling or padding

WHAT ABOUT Graphs?
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SCALING UP 
GRAPH NEURAL NETWORKS TO 
LARGE GRAPHS

https://class.vision Graph Neural Networks 103

https://class.vision/


GRAPHS IN MODERN APPLICATIONS

Class.vision Graph Neural Network 104

❑ Users:

100M ~ 1B

Tasks:

• Recommend Items (Link Prediction)

• Classify users/Items (Node Classification

❑ Products / Videos:

10M~ 1B

Recommender systems:

• Amazone

• YouTube

• Pinterest

• Instagram



GRAPHS IN MODERN APPLICATIONS
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Social Networks

• Facebook

• Twitter

• Instagram

Tasks:

• Friend Recommend(Link Prediction)

• User property recommendation (Node-Level)

❑ Users:

300M ~ 3B



GRAPHS IN MODERN APPLICATIONS
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Academic Graph

• Microsoft Academic Graph/

Tasks:

• Paper categorization 

(node classification) 

• Author collaboration recommendation 

• Paper citation recommendation

(Link prediction)

Paper

M

Authors



GRAPHS IN MODERN APPLICATIONS
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Knowledge Graphs (KGs)

• Wikipedia

• Freebase

Tasks:

• KG completion

• Reasoning

❑ Entities:

80M ~ 90M



WHAT IS IN COMMON?!
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❑Large-scale:

▪ #Nodes ranges from 10M to 10B

▪ #edges ranges from 100M to 100B

❑Taks:
▪ Node-level:

Use/Item/Paper classification

▪ Link-level:

Recommendation/Completion



PROBLEM!
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Full-batch implementation is not feasible for a large graphs 

Time inefficiency

• In CPU takes too much time!

Memory Limitations

• GPU memory is extremely limited

• We cannot load entire dataset into memory



SOLUTIONS!
SOME METHODS FOR SCALING UP GNNS
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❑ Perform message-passing over small subgraphs in each mini-batch

❖ Only the subgraphs need to be loaded on a GPU at a time. 

➢ Neighbour Sampling [Hamilton NeuriPS 2017] 

➢ Cluster-GCN [Chiang et al. KDD 2019] 

❑ Simplifies a GNN into feature-preprocessing operation

❖ Can be efficiently performed even on a CPU

➢ Simplified GCN [Wu et al. ICML2019]



GRAPHSAGE NEIGHBOR SAMPLING
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GNNs generate node embeddings via neighbour aggregation. 



GRAPHSAGE NEIGHBOR SAMPLING
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Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and 

features.

2-hop neighborhood



GRAPHSAGE NEIGHBOR SAMPLING
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More generally, K-layer GNNs generate embedding of a node using K-hop neighborhood structure and 

features.

Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and 

features.



GRAPHSAGE NEIGHBOR SAMPLING
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Key insight: To compute embedding of a single node, all we need is the K-hop neighborhood 

(which defines the computation graph). 

❑ Given a set of M different nodes in a mini-batch, we can generate their embeddings using M 

computational graphs. Can be computed on GPU!



STOCHASTIC TRAINING OF GNNS
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We can now consider the following SGD strategy for training 

K-layer GNNs: 

➢Randomly sample M (<< N) nodes. 

➢For each sampled node v: 

• Get k-hop neighbourhood, and construct the 

computation graph. 

• Use the above to generate v's embedding.

➢  Compute the loss 𝑙𝑠𝑢𝑏(𝜃) averaged over the M nodes. 

➢Perform SGD: 𝜃 ← 𝜃 − ∇𝑙𝑠𝑢𝑏(𝜃)



ISSUE STOCHASTIC TRAINING
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➢For each node, we need to get the entire K-hop neighborhood and pass it 

through the computation graph. 

➢We need to aggregate lot of information just to compute one node 

embedding. 

➢Computationally expensive.



ISSUE STOCHASTIC TRAINING
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More details: 

➢Computation graph becomes exponentially large with respect to the layer 

size K. 

➢Computation graph explodes when it hits a hub node (high-degree node). 
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NEIGHBOR SAMPLING
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Key idea: Construct the computational graph by (randomly) sampling at most 𝐻 neighbours 

at each hop.

❑ Example: 

𝐻 = 2

1st hub neighborhood

Sample 2, 3  | Drop 1
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Key idea: Construct the computational graph by (randomly) sampling at most 𝐻 neighbours 

at each hop.

❑ Example:

𝐻 = 2

1st hub neighborhood

Sample 2, 3  | Drop 1

2nd hub neighborhood

Sample 0, 8  | Drop 7

Sample 8, 9  | Drop 0
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NEIGHBOR SAMPLING
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Key idea: Construct the computational graph by (randomly) sampling at most 𝐻 neighbours 

at each hop.

❑ Example: 

𝐻 = 2

1st hub neighborhood

Sample 2, 3  | Drop 1

2nd hub neighborhood

Sample 0, 8  | Drop 7

Sample 8, 9  | Drop 0

❖ K-layer GNN will at most involve ς𝑘=1
𝐾 𝐻𝑘 leaf nodes in computation graph.
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❑Remark 1: Trade-off in sampling number H 

❖Smaller 𝐻 leads to more efficient neighbour aggregation, but results in 

more unstable training due to the larger variance in neighbour aggregation. 

❑Remark 2: Computational time

❖Even with neighbour sampling, the size of the computational graph is still 

exponential with respect to number of GNN layers K. 

❖Increasing one GNN layer would make computation 𝐻 times more 

expensive.

❑ Remark 3: How to sample the nodes 

❖Random sampling: fast but many times not optimal!

❖Random walk with restart



ISSUE WITH NEIGHBOUR SAMPLING
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❑ Issue with neighbour sampling:

➢ The size of computational graph becomes exponentially large w.r.t. the #GNN 

layers. 

➢ Computation is redundant,  especially when nodes in a mini-batch share many 

neighbours.

Computation is redundant,
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https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv


One approach to solve the redundancy problem!

https://dl.acm.org/doi/pdf/10.1145/3394486.3403142

https://dl.acm.org/doi/pdf/10.1145/3394486.3403142


CLUSTER-GCN: REVIEW FULL-BATCH GNN
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❑ In full-batch GNN implementation, all the node embeddings are updated together 

using embeddings of the previous layer

❑ In each layer, only 2*#(edges) messages need to be 

computed. 

❑ For K-layer GNN, only 2K*#(edges) messages need 

to be computed. 

❑ GNN's entire computation is only linear in #(edges) 

and #(GNN layers). Fast!



CLUSTER-GCN: INSIGHT FROM FULL-BATCH GNN
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❑ The layer-wise node embedding update allows the re-use of embeddings 

from the previous layer. 

❑ This significantly reduces the computational redundancy of neighbour 

sampling. 

❖ Of course, the layer-wise update is not feasible for a large graph due 

to limited GPU memory.
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✓ Key idea: We can sample a small subgraph of the large graph and then perform the efficient 

layer-wise node embeddings update over the subgraph.
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Key question: What subgraphs are good for training GNNs? 

➢ Recall: GNN performs node embedding by passing messages via the edges. 

▪ Subgraphs should retain edge connectivity structure of the original 

graph as much as possible. 

▪ This way, the GNN over the subgraph generates embeddings closer to 

the GNN over the original graph.



CLUSTER-GCN: SUB-GRAPH SAMPLING
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Which subgraph is good for training GNN?

➢ Left subgraph:

retains the essential community structure among the 4 nodes

➢ Right subgraph:

drops many connectivity patterns, even leading to isolated nodes

→ Good 

→ Bad



CLUSTER-GCN: EXPLOITING COMMUNITY STRUCTURE
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Real-world graph exhibits community structure 

➢ A large graph can be decomposed into many small communities. 

Key insight [Chiang et al. KDD 2019]: 

❑ Sample a community as a subgraph. 

❑ Each subgraph retains essential local connectivity pattern of the original 

graph.
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Cluster-GCN consists of two steps: 

1. Pre-processing: 

Given a large graph, partition it into groups of nodes (i.e., subgraphs). 

2. Mini-batch training: 

Sample one node group at a time. Apply GNN's message passing over the 

induced subgraph.

It is a Vanilla cluster-GCN

https://class.vision/blog/%d8%b2%db%8c%d8%b1%da%af%d8%b1%d8%a7%d9%81-%d8%a7%d9%84%d9%82%d8%a7%db%8c%db%8c-%db%8c%d8%a7-induced-sub-graph-%da%86%db%8c%d8%b3%d8%aa%d8%9f/


CLUSTER-GCN: ISSUES(1)
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❑The induced subgraph removes between-group links. 

❑As a result, messages from other groups will be lost during 

message passing, which could hurt the GNN's performance.
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❑Graph community detection algorithm puts similar nodes together in the 

same group. 

❑Sampled node group tends to only cover the small-concentrated portion of 

the entire data. 



ADVANCED CLUSTER-GCN: ISSUES(3)
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Sampled nodes are not diverse enough to be represent the graph structure: 

❑As a result, the gradient averaged over the sampled nodes, 
1

𝑉𝑐
σ𝑣𝜖𝑉𝑐

∇𝑙𝑣(𝜃), 

becomes unreliable. 

▪ Fluctuates a lot from a node group to another. 

▪ In other words, the gradient has high variance. 

❑Leads to slow convergence of SGD
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✓ Solution: Aggregate multiple node groups per mini-batch. 

❑ Partition the graph into relatively-small groups of nodes. 

❑ For each mini-batch: 

1. Sample and aggregate multiple node groups. 

2. Construct the induced subgraph of the aggregated node group. 

3. The rest is the same as vanilla Cluster-GCN (compute node 

embeddings and the loss, update parameters)
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Why does the solution work? 

❑ Sampling multiple node groups 

▪ Makes the sampled nodes more representative of the entire nodes. 

▪ Leads to less variance in gradient estimation.

❑ The induced subgraph over aggregated node groups 

▪ Includes between-group edges 

▪ Message can flow across groups.



GRAPHSAGE VS CLUSTER-GCN
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❑ Cluster-GCN is more computationally efficient than neighbour 

sampling, especially when #(GNN layers) is large. 

❑ But Cluster-GCN leads to systematically biased gradient estimates 

(due to missing cross-community edges)



SIMPLIFYING GNNS
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❑We start from Graph Convolutional Network (GCN) [Kipf & Welling ICLR 2017]. 

❑We simplify GCN by removing the non-linear activation from the GCN 

[Wu et all. ICML 2019]. 

▪ Wu et al. demonstrated that the performance on benchmark is not 

much lower by the simplification. 

❑ Simplified GCN turns out to be extremely scalable by the model design.



SIMPLIFYING GNNS: RECALL MEAN-POOL IN GCN
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❑ Given: Graph 𝐺 = 𝑉, 𝐸 with input node features 𝑋𝑣 for 𝑣 ∈ 𝑉, where E 

includes the self-loop: 

▪ 𝑣, 𝑣 ∈ 𝐸 for all 𝑣 ∈ 𝑉. 

❑ Set input node embeddings: ℎ𝑣
(0)

= 𝑋𝑣 𝑓𝑜𝑟 𝑣 ∈ 𝑉
❑ For 𝑘 ∈ {𝑂, . . . , 𝐾 − 1}: 

▪ For all 𝑣 ∈ 𝑉, aggregate neighbouring information as 

❑ Final node embedding: 𝑍𝑣 = ℎ𝑣
(𝑘)
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GCN aggregations can be formulated as matrix vector product: 

❑ Let  𝑯(𝒌) = [ℎ1
𝑘

… ℎ|𝑣|
(𝑘)

]𝑇

❑ Let 𝑨 be the adjacency matrix (w/ self-loop) 

❑ Then: 

❑ Let 𝑫 be diagonal matrix where 

𝐷𝑣,𝑣 = 𝐷ⅇ𝑔 𝑣 = |𝑁 𝑣 |

❑ The inverse of 𝐷: 𝐷−1 is also diagonal:

𝐷𝑣,𝑣
−1 = 1/|𝑁 𝑣 | 

❑ Therefore,
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GCN's neighbour aggregation: 

In matrix form: 

where ሚ𝐴 = 𝐷−1𝐴 

Note: The original GCN uses re-normalized version: ሚ𝐴 = 𝐷−1/2𝐴 𝐷−1/2

▪ Empirically, this version of ሚ𝐴 often gives better performance than 

𝐷−1𝐴
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Simplify GCN by removing ReLU non-linearity: 

The final node embedding matrix is given as
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❑ Removing ReLU significantly simplifies GCN! 

𝐻(𝐾) = ሚ𝐴𝐾𝑋𝑊𝑇

❑ Notice ෩𝑨𝑲𝑿 does not contain any learnable parameters; hence,

 it can be pre-computed. 

▪ Efficiently computable as a sequence of sparse-matrix vector products: 

▪ Do 𝑋 ← ሚ𝐴𝑋 for K times.
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❑ Let ෩𝑿 = ෩𝑨𝑲𝑿 be pre-computed matrix. 

Simplified GCN's final embedding is 

𝐻(𝐾) = ෨𝑋𝑊𝑇

❑ It's just a linear transformation of pre-computed matrix! 

❑ Back to the node embedding form: 

❑ Embedding of node 𝑣 only depends on its own (pre-processed) 

feature!
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❑ Once ෨𝑋 is pre-computed, embeddings of 𝑀 nodes can be generated in time 

linear in 𝑀: 

▪ Given 𝑀 nodes {𝑣1, 𝑣2, … , 𝑣𝑀}, their embeddings are
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COMPARISON WITH OTHER MODELS
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❑ Compared to neighbour sampling: 

➢ Simplified GCN generates node embeddings much more 

efficiently (no need to construct the giant computational 

graph for each node). 

❑ Compared to Cluster-GCN: 

➢ Mini-batch nodes of simplified GCN can be sampled 

completely randomly from the entire nodes (no need to 

sample from multiple groups as Cluster-GCN does) 

➢ Leads to lower SGD variance during training. 

❑ But the model is much less expressive.
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Compared to the original GN models, simplified GCN's expressive 

power is limited due to the lack of non-linearity in generating 

node embeddings.
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Compared to the original GN models, simplified GCN's expressive 

power is limited due to the lack of non-linearity in generating 

node embeddings.

Why the performance is good?

https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgd

Qy7imNkDn&t=880

https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn&t=880
https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn&t=880
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
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https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py
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❑Using key-value and graph database:

➢ Documentation:
https://pytorch-geometric.readthedocs.io/en/latest/advanced/remote.html

➢ Example:
https://github.com/pyg-team/pytorch_geometric/tree/master/examples/kuzu/papers_100M

https://pytorch-geometric.readthedocs.io/en/latest/advanced/remote.html
https://github.com/pyg-team/pytorch_geometric/tree/master/examples/kuzu/papers_100M
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WHY ARE EDGE FEATURES ARE IMPORTANT?
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Edge feature
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THE GENERAL PROCESS IN GNNS
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USING EDGE WEIGHT

Class.vision Graph Neural Network 162

Node Features/embeddings
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DIFFERENT EDGE TYPES – RELATIONAL GCN
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Relational GCN 
Modelling Relational Data with Graph Convolutional Networks, Schlichtkrull et al.
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.htm

l#torch_geometric.nn.conv.RGCNConv

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNCo

nv.html#torch_geometric.nn.conv.FastRGCNConv

Example: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNConv.html#torch_geometric.nn.conv.FastRGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNConv.html#torch_geometric.nn.conv.FastRGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNConv.html#torch_geometric.nn.conv.FastRGCNConv
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py


DIFFERENT EDGE TYPES – GNN FILM
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GNN-FiLM: Graph Neural Networks with Feature-wise 

Linear Modulation

https://arxiv.org/abs/1906.12192
https://arxiv.org/abs/1906.12192
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https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linear-

modulation?ref=recommended

https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linear-modulation?ref=recommended
https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linear-modulation?ref=recommended
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
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https://arxiv.org/pdf/1906.12192.pdf

https://arxiv.org/pdf/1906.12192.pdf
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MULTIDIMENSIONAL EDGE FEATURES
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MULTIDIMENSIONAL EDGE FEATURES



MULTIDIMENSIONAL EDGE FEATURES: MP-GNN
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MP-GNN
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MP-GNN
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MULTIDIMENSIONAL EDGE FEATURES: PNACONV
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MULTIDIMENSIONAL EDGE FEATURES 
OTHER EXAMPLES
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USING EDGE FEATURES IN PYTORCH GEOMETRIC
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
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➢edge_weight → GNN Layer can use weight values on the adjacency matrix 

➢edge_type → GNN Layer can use different edge types / relations 

➢edge_attr → GNN Layer can use edge features



LINK PREDICTION
AND GRAPH AUTOENCODER
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WHAT IS A RECOMMENDER SYSTEM?
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Content-based filtering Collaborative filtering



COLLABORATIVE FILTERING
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GRAPH CONVOLUTIONAL MATRIX COMPLETION 
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Graph Convolutional Matrix Completion

Rianne van den Berg, Thomas N. Kipf, Max Welling 2017 

𝑟 ∈ 𝑅

users items
Learnable transformation

SoftMax

Which edge type



GRAPH CONVOLUTIONAL MATRIX COMPLETION 
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Graph Convolutional Matrix Completion

Rianne van den Berg, Thomas N. Kipf, Max Welling 2017 



GRAPH AUTOENCODERS (GAE)

Class.vision Graph Neural Network 189

Embedding

Latent spaceEncoder Decoder

A graph convolutional Neural Network

produces a low dimensional embedding representation

ത𝑋 = 𝐺𝐶𝑁 𝐴, 𝑋 = 𝑅ⅇ𝐿𝑈 ሚ𝐴𝑋𝑊0

With ሚ𝐴 = 𝐷−1/2 𝐴 𝐷−1/2

Z = ത𝑋
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Encoder

A → [1,4]

B → [4,5]

C → [6,2]

Node embedding in a

latent space with two

dimension.

Decoder

Reconstruct

The input graph

Inner product

Between latent variable Z
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1

2

4

3

1 2.4 8.1 0.3

2 0.7 0.6 0.2

3 0.3 9.2 1.2

4 2.1 1.8 0.8

1 2 3 4

2.4 0.7 0.3 2.1

8.1 0.6 9.2 1.8

0.3 0.2 1.2 0.8

Variational Graph Auto-Encoders, 2016

https://arxiv.org/abs/1611.07308

𝑍 𝑍𝑇

https://arxiv.org/abs/1611.07308
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1 2.4 8.1 0.3

2 0.7 0.6 0.2

3 0.3 9.2 1.2

4 2.1 1.8 0.8

1 2 3 4

2.4 0.7 0.3 2.1

8.1 0.6 9.2 1.8

0.3 0.2 1.2 0.8

Variational Graph Auto-Encoders, 2016

https://arxiv.org/abs/1611.07308

𝑍 𝑍𝑇4 × 3 3 × 4

1 2 3 4

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

4 ? ? ? ?

Adjacency

2

4 × 4

https://arxiv.org/abs/1611.07308
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1 2.4 8.1 0.3

2 0.7 0.6 0.2

3 0.3 9.2 1.2

4 2.1 1.8 0.8

1 2 3 4

2.4 0.7 0.3 2.1

8.1 0.6 9.2 1.8

0.3 0.2 1.2 0.8

Variational Graph Auto-Encoders, 2016

https://arxiv.org/abs/1611.07308

𝑍 𝑍𝑇

2?

4 × 3 3 × 4

1 2 3 4

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

4 ? ? ? ?

Adjacency

4 × 4

https://arxiv.org/abs/1611.07308


HETEROGENEOUS & 
KNOWLEDGE GRAPH 
EMBEDDING
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HETEROGENEOUS GRAPHS
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❑ A heterogeneous graph is defined as 

▪ Nodes with node types 𝑣𝑖 ∈ 𝑉
▪ Edges with relation types (𝑣𝑖 , r, 𝑣𝑗) ∈ 𝐸

▪ Node type 𝑇(𝑣𝑖) 

▪ Relation type 𝑟 ∈ 𝑅

𝐺 = (𝑉, 𝐸, 𝑅, 𝑇)
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SPATIO-TEMPORAL 
GRAPH NEURAL NETWORKS
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TIME VARYING GRAPH
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𝑮 𝑽, 𝑬, 𝑿𝑽 𝒕 , 𝑿𝑬 𝒕
Static structure, time-varying features 

Spatio-temporal graph

𝑮(𝑽(𝒕), 𝑬(𝒕), 𝑿𝑽(𝒕), 𝑿𝑬(𝒕))
Time-varying structure, time-varying features

Dynamic graph

𝑮 𝑽, 𝑬, 𝑿𝑽, 𝑿𝑬

Static structure, static features



HOW DO WE DEAL WITH GRAPHS WITH STATIC STRUCTURE 
AND TIME-VARYING FEATURES?
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THERE ARE SEVERAL EXISTING MODELS FOR TIME SERIES 
FORECASTING
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• Basic models

• ARMA-type models (ARMA, VARIMAX, etc.)

• Basically multi-linear regression over time 

• Requires “stationary” generating process

• Neural network-based models

• Recurrent neural networks (LSTM, GRU)

• Temporal convolutions (see 2016 paper)

• Temporal attention (see 2019 paper)



SPATIAL
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STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT, 
HERE IS AN EXAMPLE IN PSEUDOCODE
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STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT, 
HERE IS AN EXAMPLE IN PSEUDOCODE
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https://arxiv.org/pdf/2104.07788.pdf
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T-GCN:A TEMPORAL GRAPH CONVOLUTIONAL NETWORK 
FOR TRAFFIC PREDICTION

T-GCN: A Temporal Graph ConvolutionalNetwork for Traffic Prediction, Zhao et all

https://arxiv.org/pdf/1811.05320


PYTORCH GEOMETRIC TEMPORAL
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✓ StaticGraphTemporalSignal 

✓ DynamicGraphTemporalSignal 

✓ DynamicGraphStaticSignal 

Spatiotemporal Signal Splitting

Temporal GNN Layers Datasets

https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html

https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html


THANK YOU

Alireza Akhavanpour

https://Class.vision
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SOURCES

CS224W: Machine Learning with Graphs 

https://web.stanford.edu/class/cs224w/

Intro to graph neural networks (ML Tech Talks) 

https://www.youtube.com/watch?v=8owQBFAHw7E&t=253s

Introduction to graph neural networks (made easy!) 

https://www.youtube.com/watch?v=cka4Fa4TTI4

https://www.topbots.com/graph-convolutional-networks/

How to use edge features in Graph Neural Networks (and PyTorch Geometric) 

https://www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7O8Z&index=5

227https://Class.vision Graph Neural Network

https://web.stanford.edu/class/cs224w/
https://www.youtube.com/watch?v=8owQBFAHw7E&t=253s
https://www.youtube.com/watch?v=cka4Fa4TTI4
https://www.topbots.com/graph-convolutional-networks/
https://www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7O8Z&index=5
https://class.vision/
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