
GRAPH NEURAL NETWORK
Alireza Akhavanpour
http://Class.vision

http://class.vision/

AGENDA

An Introduction to Graphs and their Applications in Machine Learning

Graph Neural Networks and Implementation in TensorFlow/Keras

Implementing Graph Neural Networks in PyG

Training and Using Graph Neural Networks at Scale

Edge Features

Link Prediction and Implementing Recommender Systems

Spatio-Temporal Graph Neural Networks

Conclusion

Class.vision Graph Neural Network 2

GRAPH TERMINOLOGY

What is Node, Edge, and …

How we can store graphs?

…

Class.vision Graph Neural Network 3

GRAPH DEFINITION

Class.vision Graph Neural Network 4

Nodes

Edges

GRAPH DEFINITION

https://Class.vision Graph Neural Network 5

Nodes

Edges

Node Features

https://class.vision/

TYPES OF GRAPH

6

• Undirected graph

• Directed graph

https://Class.vision Graph Neural Network

https://class.vision/

TYPES OF GRAPH

7

• Undirected graph

• Directed graph

A

B

or

https://Class.vision Graph Neural Network

https://class.vision/

TYPES OF GRAPH

8

• Homogeneous graph

• Heterogeneous graph

Homogeneous Heterogeneous

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH EXAMPLE

9

𝐺 = 𝑉, 𝐸, 𝑢

EDGES (Adjacency, Weight) = (A,W)

VERTECIES (NODES)

FEATURE VECTORS

Nodes

Edges

Node Features

Social media accounts

People connection

Age, Gender, …

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH EXAMPLE

10

𝐺 = 𝑉, 𝐸, 𝑢

EDGES (Adjacency, Weight) = (A,W)

VERTECIES (NODES)

FEATURE VECTORS

Nodes

Edges

Node Features

Undirected graph

Directed graph

or
Social media accounts

People connection

Age, Gender, …

Facebook

Instagram

https://Class.vision Graph Neural Network

https://class.vision/

STORING GRAPH

11

3

0

2

1

Homogeneous

Edge list:

Source Node, Target Node

https://Class.vision Graph Neural Network

https://class.vision/

STORING GRAPH

12

3

0

2

1

Homogeneous

Adjacency Matrix:

𝑉 × 𝑉

https://Class.vision Graph Neural Network

https://class.vision/

STORING GRAPH

13

3

0

2

1

Homogeneous

Adjacency Matrix:

We can use weight instead of Boolean!

To show how strong the connection is!

https://Class.vision Graph Neural Network

https://class.vision/

EDGE FEATURES

14

Nodes

Edges

Node Features

Edge Features

https://Class.vision Graph Neural Network

https://class.vision/

YOU CAN MODEL COMPLEX SYSTEMS, DEPENDING ON HOW
YOU CHOOSE TO DEFINE THE GRAPH

15

❑Edge type:

weighted vs binary

❑Edge directionality:

undirected vs directed

❑Features:

None, node-based, edge-based

❑Temporal Aspects:

Features, topology

❑Others:

Multi-graphs, hypergraphs, complex networks

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH DEGREE

16

a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH DEGREE

17

a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH DEGREE

18

a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

Degree matrix (D) is a diagonal matrix defining number of

connection per node

𝐷 =

𝟐 0 0 0 0
0 𝟑 0 0 0
0 0 𝟑 0 0
0 0 0 𝟐 0
0 0 0 0 𝟐

Degree matrix shows influence of each node on the

whole graph

https://Class.vision Graph Neural Network

https://class.vision/

LAPLACIAN OF GRAPH

19

a

c

b

e

d

𝑥 =

𝑎
𝑏
𝑐
𝑑
ⅇ

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

Laplacian matrix (L) is a L = D — A OR L = D — W in weighted matrix

𝐷 =

2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

https://Class.vision Graph Neural Network

https://class.vision/

NORMALIZED GRAPH

20

a

c

b

e

d
We can decide to show the relation between of the

nodes, with any of the following matrices:

𝐴, 𝐿, ҧ𝐴, ത𝐿

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH USAGE
AND APPLICATIONS

21https://Class.vision Graph Neural Network

https://class.vision/

GRAPH DATA IS EVERYWHERE

Medicine/ pharmacy Recommender system Social Networks

Brain cortexAirports connection Traffic map

MOLECULES ARE GRAPHS!

23

A very natural way to represent molecules is as a graph

• Atoms as nodes, bonds as edges

• Features such as atom type, charge, bond type..

https://Class.vision Graph Neural Network

https://class.vision/

GNNS FOR MOLECULE CLASSIFICATION

24

Interesting task to predict is, for example, whether the

molecule is a potent drug

• Can do binary classification on whether the drug will

inhibit certain bacteria. (E.coli)

• Train on a curated dataset for compounds where

response is known.

https://Class.vision Graph Neural Network

https://class.vision/

FOLLOW-UP STUDY

25

• Once trained, the model can be applied to any

molecule.

o Execute on a large dataset of known candidate

molecules.

o Select the —top-100 candidates from your GNN

model.

o Have chemists thoroughly investigate those (after

some additional filtering).

• Discover a previously overlooked compound that is a

highly potent antibiotic!

https://Class.vision Graph Neural Network

https://class.vision/

SUCCESS STORY!

26https://Class.vision Graph Neural Network

https://class.vision/

SUCCESS STORY!

27https://Class.vision Graph Neural Network

https://class.vision/

SUCCESS STORY!

PRESENTATION TITLE 28

https://Class.vision Graph Neural Network

https://class.vision/

SUCCESS STORY!

29https://Class.vision Graph Neural Network

https://class.vision/

TRAFFIC MAPS ARE GRAPHS!

30

Transportation maps (e.g. the ones found on Google Maps)

naturally modeled as graphs.

Nodes could be intersections, and edges could be roads.

(Relevant node features: road length, current speeds, historical speeds)

https://Class.vision Graph Neural Network

https://class.vision/

DEEPMIND’S ETA PROBLEM!

31

Partition candidate route into super-

segments, sampled proportionally to

(est.) traffic density.

Run GNN on super-segment graph to

estimate estimated time of arrival (ETA)

(graph regression).

https://class.vision/blog/ /گرافی-عصبی-شبکه-ترافیک-مپ-گوگل

https://Class.vision Graph Neural Network

https://class.vision/blog/%DA%AF%D9%88%DA%AF%D9%84-%D9%85%D9%BE-%D8%AA%D8%B1%D8%A7%D9%81%DB%8C%DA%A9-%D8%B4%D8%A8%DA%A9%D9%87-%D8%B9%D8%B5%D8%A8%DB%8C-%DA%AF%D8%B1%D8%A7%D9%81%DB%8C/
https://class.vision/

RECOMMENDER SYSTEMS

32

A common task on social networks is recommendation.

• Based on a user's preferences, recommend new

content

• Can leverage existing links as adjacency input to a

(link-prediction) GNN!

• Major issue: our methods (so far) assume the graph is

processed all-at- once! (one solution is GraphSAGE)

https://Class.vision Graph Neural Network

https://class.vision/

GRAPH CHALLENGE
AND PROBLEMS

33https://Class.vision Graph Neural Network

https://class.vision/

WHY USE GRAPHS?
WHY NOT JUST USE MLP OR ATTENTION AND LEARN

“EVERYTHING” END-TO-END?

20XX PRESENTATION TITLE 34

PROBLEM: GRAPH DATA IS DIFFERENT

20XX PRESENTATION TITLE 35

Challenge 1: Data size and shape It should be Size independent

PROBLEM: GRAPH DATA IS DIFFERENT

20XX PRESENTATION TITLE 36

Challenge 2: Isomorphism It should be Permutation invariance

We cannot feed adjacency matrix to MLP

PROBLEM: GRAPH DATA IS DIFFERENT

20XX PRESENTATION TITLE 37

Challenge 3: Grid structure It should be in Non-Euclidean space

OTHER CHALLENGES WITH GRAPH CONVOLUTIONS

20XX PRESENTATION TITLE 38

Desirable properties for a graph convolutional layer:

❑Computational and storage efficiency (~O(V + E))

❑Fixed number of parameters (independent of input size)

❑Localisation (acts on a local neighbourhood of a node)

❑Specifying different importances to different neighbours

❑Applicability to inductive problems.

https://class.vision/blog/%d9%85%d8%b9%d9%86%db%8c-inductive-transductive/

LEARNING IN GRAPH

20XX PRESENTATION TITLE 39

REPRESENTATION LEARNING

20XX PRESENTATION TITLE 40

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

GNN

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 41

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 42

Model

✓ Node Prediction

(Node-level Prediction)

?

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 43

Model

✓ Node Prediction

(Node-level Prediction)

✓ Link Prediction

(Edge-level prediction)

?

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 44

Model

✓ Node Prediction

(Node-level Prediction)

✓ Link Prediction

(Edge-level prediction)

✓ Graph representation

(Graph-level prediction)

WHAT TYPES OF PROBLEMS CAN GNNS SOLVE?

20XX PRESENTATION TITLE 45

Unsupervised

• Node, Edge, or Graph clustering

- Use embeddings to find “similar” nodes, edges, or graphs

• Link Prediction

• Graph Generation

Supervised

• Node, Edge, or Graph classification / regression

- Use embeddings to predict based on known data

“A Fair Comparison of Graph Neural Networks for Graph Classification”, ICLR 2020

“Revisiting Graph Neural Networks for Link Prediction” (2020)

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 46

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 47

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Goal: Similarity(u, v) ≈ Similarity(𝑍𝑢, 𝑍𝑣)

𝑆𝐺(u, v) ≈ 𝑆𝑉(𝑍𝑢, 𝑍𝑣)

LEARNING IN
GRAPH REPRESENTATION LEARNING

20XX PRESENTATION TITLE 48

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Goal: 𝑆𝐺(u, v) ≈ 𝑆𝑉(𝑍𝑢, 𝑍𝑣)

❑ How to perform Encoding?

❑ What is the meaning of similarity ?

HOW TO ENCODE AND DECODE?

20XX PRESENTATION TITLE 49

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

HOW TO ENCODE AND DECODE?

20XX PRESENTATION TITLE 50

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

𝐷ⅇ𝑐 𝑍𝑢, 𝑍𝑣 = 𝐻𝑜𝑤 𝑠𝑖𝑚𝑚𝑖𝑙𝑎𝑟𝑍𝑢 𝑎𝑛𝑑 𝑍𝑣 𝑎𝑟ⅇ?

Decoder

A positive number to show the similarity

𝑆𝐺(u, v) ≈ 𝑆𝑉(𝑍𝑢, 𝑍𝑣)

HOW TO ENCODE AND DECODE?

20XX PRESENTATION TITLE 51

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

𝐷ⅇ𝑐 𝑍𝑢, 𝑍𝑣 = 𝐻𝑜𝑤 𝑠𝑖𝑚𝑚𝑖𝑙𝑎𝑟𝑍𝑢 𝑎𝑛𝑑 𝑍𝑣 𝑎𝑟ⅇ?

Decoder

A positive number to show the similarity

Matrix factorization

Look-up table

Random Walk

Inner product 𝑍𝑢
𝑇𝑍𝑣

Inner product 𝑍𝑢
𝑇𝑍𝑣

Decode statistic of random walk

DRAWBACKS

20XX PRESENTATION TITLE 52

u

v

Embedding space

𝒁𝒖

𝒁𝒗

Enc(v)

Enc(u)

Encoding

Encoder

𝐷ⅇ𝑐 𝑍𝑢, 𝑍𝑣 = 𝐻𝑜𝑤 𝑠𝑖𝑚𝑚𝑖𝑙𝑎𝑟𝑍𝑢 𝑎𝑛𝑑 𝑍𝑣 𝑎𝑟ⅇ?

Decoder

A positive number to show the similarity

No parameter sharing: Computationally expensive

No semantic information: Integration of Feature nodes are difficult

Not Inductive: Cannot predict embedding for unseen data (Inherently Transudative)

DEEP VS SHALLOW

20XX PRESENTATION TITLE 53

Older methods (“shallow”, non-neural network models)

Deepwalk, node2vec

Generally fallen out of favor with researchers because:

• No parameter sharing (bad scaling, overfitting)

• Transductive (only work with nodes present during training)

GNNs solve these problems, they can

✓ Share parameters

✓ Can generalize to inductive tasks

inductive and transductive!

https://class.vision/blog/%d9%85%d8%b9%d9%86%db%8c-inductive-transductive/

REPRESENTATION LEARNING

20XX PRESENTATION TITLE 54

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

...

Message passing layers

GRAPH CONVOLUTIONAL NETWORK

20XX PRESENTATION TITLE 55

A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/pdf/1901.00596.pdf

UNDERSTANDING GRAPH NEURAL NETWORKS

20XX PRESENTATION TITLE 56

GNNs were originally based on 2-step message passing

1. Aggregate :

Pass information (the “message”) from a target node’s neighbors to the target node

2. Update:

Update each node’s features based on “message” to form an embedded representation

MESSAGE PASSING

20XX PRESENTATION TITLE 57

h = node features / embeddings

ℎ𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝐴𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ℎ𝑣 , ∀ 𝑣 ∈ 𝑁(𝑢)

Aggregate function operates over sets, must be permutation

invariant or permutation equivariant

MESSAGE PASSING

20XX PRESENTATION TITLE 58

h = node features / embeddings

ℎ𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝐴𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ℎ𝑣 , ∀ 𝑣 ∈ 𝑁(𝑢)

Aggregate function operates over sets, must be permutation

invariant or permutation equivariant

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

MESSAGE PASSING

20XX PRESENTATION TITLE 59

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

1

2

3

4

MESSAGE PASSING

20XX PRESENTATION TITLE 60

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

1

2

3

4

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

MESSAGE PASSING

20XX PRESENTATION TITLE 61

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

1

2

3

4

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

𝜎 𝑊𝑠𝑒𝑙𝑓 + 𝑊𝑛𝑒𝑖𝑔ℎ +

= …𝑥3𝑥2𝑥1 𝑥4

MESSAGE PASSING

20XX PRESENTATION TITLE 62

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

MESSAGE PASSING

20XX PRESENTATION TITLE 63

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

MESSAGE PASSING

20XX PRESENTATION TITLE 64

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1

2

3

4

MESSAGE PASSING

20XX PRESENTATION TITLE 65

ℎ𝑢 = 𝜎 𝑊𝑠𝑒𝑙𝑓ℎ𝑢 + 𝑊𝑛𝑒𝑖𝑔ℎ
𝑣 ∈𝑁(𝑢)

ℎ𝑣

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1 1

2 2

33

4 4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥4

…𝑥3𝑥2𝑥1 𝑥45

1

2

3

4

(k+1) (k+1) (k+1) kk

The dimensions can be different

Len(ℎ𝑢
𝑘) ≠ 𝑙ⅇ𝑛(ℎ𝑢

𝑘+1)

✓ The local feature aggregation can be compared to learnable CNN kernels:

https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/

MESSAGE PASSING

20XX PRESENTATION TITLE 66

➢ h = node features / embeddings

➢ k = number of hops

Each node’s updated value becomes a weighting of its previous value + a weighting of its neighbor’s values

The choice to sum over neighboring nodes isn’t the only valid choice, other choices include mean, max,

concatenation, etc.

MESSAGE PASSING

20XX PRESENTATION TITLE 67

❑ Collapse Wself and Wneigh into W by adding self-loops to the adjacency matrix A

This method reduces message passing to relatively simple

matrix multiplication

THE MEAN-POOLING UPDATE RULE

20XX PRESENTATION TITLE 68

❑ Problem: Multiplication by A+I may increase the scale of the output features.

✓ Solution: We need to normalize appropriately:

𝐻(𝑘+1) = 𝜎 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)

𝐻(𝑘+1) = 𝜎 𝐷−1 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

1

𝑁𝑖
𝑊ℎ𝑗

𝑘

We arrive at the mean-pooling update rule:

which is simple but versatile (common for inductive problems!).

GCN GRAPH CONVOLUTIONAL NETWORK

20XX PRESENTATION TITLE 69

“Original” GNN

(Merkwirth, 2005 + Scarselli et al., 2009)

GCN

(Kipf + Welling, 2016)

Normalizes by # of nodes in neighborhood

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

1

𝑁𝑖 𝑁𝑗

𝑊ℎ𝑗
𝑘

Node-wise, this can be written as follows:

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 70

https://www.topbots.com/graph-convolutional-networks/

https://www.topbots.com/graph-convolutional-networks/

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 71

𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 72

𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 73

𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 74

𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 75

𝐻(𝑘+1) = 𝜎 𝐴𝐻(𝑘)𝑊(𝑘+1)

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

𝑊ℎ𝑗
𝑘

PROBLEMS!

20XX PRESENTATION TITLE 76

1. We miss the feature of the node itself. For example, the first row of the result matrix should

contain features of node A too.

PROBLEMS!

20XX PRESENTATION TITLE 77

1. We miss the feature of the node itself. For example, the first row of the result matrix should

contain features of node A too.

𝐻(𝑘+1) = 𝜎 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)

PROBLEMS!

20XX PRESENTATION TITLE 78

1. We miss the feature of the node itself. For example, the first row of the result matrix should

contain features of node A too.

2. Instead of sum() function, we need to take the average, or even better, the weighted average of

neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using

the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes

tend to get small aggregate vectors, which may later cause exploding or vanishing

gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale

of input data. Thus, we need to normalize these vectors to get rid of the potential issues.

PROBLEMS!

20XX PRESENTATION TITLE 79

2. Instead of sum() function, we need to take the average, or even better, the weighted average of

neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using

the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes

tend to get small aggregate vectors, which may later cause exploding or vanishing

gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale

of input data. Thus, we need to normalize these vectors to get rid of the potential issues.

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 80

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

1

𝑁𝑖
𝑊ℎ𝑗

𝑘

𝐻(𝑘+1) = 𝜎 𝐷−1 𝐴 + 𝐼 𝐻(𝑘)𝑊(𝑘+1)

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 81

• So far, so good!

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 82

• So far, so good!

• Intuitively, it should be better if we treat high and low degree nodes differently.

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 83

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 84

The new scaler gives us the “weighted” average.

What are we doing here is to put more weights on

the nodes that have low-degree and reduce the

impact of high-degree nodes.

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 85

INTUITION AND THE MATH'S BEHIND

20XX PRESENTATION TITLE 86

ℎ(𝑘+1) = 𝜎

𝑗∈𝑁𝑖

1

𝑁𝑖 𝑁𝑗

𝑊ℎ𝑗
𝑘

THE NUMBER OF LAYERS

20XX PRESENTATION TITLE 87

❑ The number of layers is the farthest distance that node features can travel.

❑ Normally we don’t want to go too far. With 6–7 hops, we almost get the entire graph which

makes the aggregation less meaningful.

HOW MANY LAYERS SHOULD WE STACK THE GCN?

20XX PRESENTATION TITLE 88

GNN VARIANTS

20XX PRESENTATION TITLE 89

ℎ𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝐴𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ℎ𝑣 , ∀ 𝑣 ∈ 𝑁(𝑢)

PRESENTATION TITLE 90

Source: Graph Neural Networks: A Review of Methods and Applications

91

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

BINARY MASKS FOR NODE-LEVEL PREDICTION

20XX PRESENTATION TITLE 92

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

3

?

2

?

1

3

?

2

?

1

BINARY MASKS FOR NODE-LEVEL PREDICTION

20XX PRESENTATION TITLE 93

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

𝑥𝑛𝑥3𝑥2𝑥1
…

3

?

2

?

1

3

?

2

?

1 1

1

0

1

0

msak

GLOBAL GRAPH POOLING

20XX PRESENTATION TITLE 94

GLOBAL GRAPH POOLING

20XX PRESENTATION TITLE 95

GLOBAL GRAPH POOLING

20XX PRESENTATION TITLE 96

BATCHING WITH GRAPHS

20XX PRESENTATION TITLE 97

In the image or language domain:

rescaling or padding

WHAT ABOUT Graphs?

BATCHING WITH GRAPHS

20XX PRESENTATION TITLE 98

BATCHING WITH GRAPHS

20XX PRESENTATION TITLE 99

BATCHING WITH GRAPHS

20XX PRESENTATION TITLE 100

BATCHING WITH GRAPHS

20XX PRESENTATION TITLE 101

BATCHING WITH GRAPHS

20XX PRESENTATION TITLE 102

SCALING UP
GRAPH NEURAL NETWORKS TO
LARGE GRAPHS

https://class.vision Graph Neural Networks 103

https://class.vision/

GRAPHS IN MODERN APPLICATIONS

Class.vision Graph Neural Network 104

❑ Users:

100M ~ 1B

Tasks:

• Recommend Items (Link Prediction)

• Classify users/Items (Node Classification

❑ Products / Videos:

10M~ 1B

Recommender systems:

• Amazone

• YouTube

• Pinterest

• Instagram

GRAPHS IN MODERN APPLICATIONS

Class.vision Graph Neural Network 105

Social Networks

• Facebook

• Twitter

• Instagram

Tasks:

• Friend Recommend(Link Prediction)

• User property recommendation (Node-Level)

❑ Users:

300M ~ 3B

GRAPHS IN MODERN APPLICATIONS

Class.vision Graph Neural Network 106

Academic Graph

• Microsoft Academic Graph/

Tasks:

• Paper categorization

(node classification)

• Author collaboration recommendation

• Paper citation recommendation

(Link prediction)

Paper

M

Authors

GRAPHS IN MODERN APPLICATIONS

Class.vision Graph Neural Network 107

Knowledge Graphs (KGs)

• Wikipedia

• Freebase

Tasks:

• KG completion

• Reasoning

❑ Entities:

80M ~ 90M

WHAT IS IN COMMON?!

Class.vision Graph Neural Network 108

❑Large-scale:

▪ #Nodes ranges from 10M to 10B

▪ #edges ranges from 100M to 100B

❑Taks:
▪ Node-level:

Use/Item/Paper classification

▪ Link-level:

Recommendation/Completion

PROBLEM!

Class.vision Graph Neural Network 109

Full-batch implementation is not feasible for a large graphs

Time inefficiency

• In CPU takes too much time!

Memory Limitations

• GPU memory is extremely limited

• We cannot load entire dataset into memory

SOLUTIONS!
SOME METHODS FOR SCALING UP GNNS

Class.vision Graph Neural Network 110

❑ Perform message-passing over small subgraphs in each mini-batch

❖ Only the subgraphs need to be loaded on a GPU at a time.

➢ Neighbour Sampling [Hamilton NeuriPS 2017]

➢ Cluster-GCN [Chiang et al. KDD 2019]

❑ Simplifies a GNN into feature-preprocessing operation

❖ Can be efficiently performed even on a CPU

➢ Simplified GCN [Wu et al. ICML2019]

GRAPHSAGE NEIGHBOR SAMPLING

Class.vision Graph Neural Network 111

GNNs generate node embeddings via neighbour aggregation.

GRAPHSAGE NEIGHBOR SAMPLING

Class.vision Graph Neural Network 112

Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and

features.

2-hop neighborhood

GRAPHSAGE NEIGHBOR SAMPLING

Class.vision Graph Neural Network 113

More generally, K-layer GNNs generate embedding of a node using K-hop neighborhood structure and

features.

Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and

features.

GRAPHSAGE NEIGHBOR SAMPLING

Class.vision Graph Neural Network 114

Key insight: To compute embedding of a single node, all we need is the K-hop neighborhood

(which defines the computation graph).

❑ Given a set of M different nodes in a mini-batch, we can generate their embeddings using M

computational graphs. Can be computed on GPU!

STOCHASTIC TRAINING OF GNNS

Class.vision Graph Neural Network 115

We can now consider the following SGD strategy for training

K-layer GNNs:

➢Randomly sample M (<< N) nodes.

➢For each sampled node v:

• Get k-hop neighbourhood, and construct the

computation graph.

• Use the above to generate v's embedding.

➢ Compute the loss 𝑙𝑠𝑢𝑏(𝜃) averaged over the M nodes.

➢Perform SGD: 𝜃 ← 𝜃 − ∇𝑙𝑠𝑢𝑏(𝜃)

ISSUE STOCHASTIC TRAINING

Class.vision Graph Neural Network 116

➢For each node, we need to get the entire K-hop neighborhood and pass it

through the computation graph.

➢We need to aggregate lot of information just to compute one node

embedding.

➢Computationally expensive.

ISSUE STOCHASTIC TRAINING

Class.vision Graph Neural Network 117

More details:

➢Computation graph becomes exponentially large with respect to the layer

size K.

➢Computation graph explodes when it hits a hub node (high-degree node).

E
x

p
o

n
e
n

ti
a

l
G

ro
w

th

S
a

m
p

le
 t

h
e
 n

e
ig

h
b

o
rh

o
o

d

fr
o

m
 t

h
e
 r

o
o
t

to
 l
e
a

v
e
s

NEIGHBOR SAMPLING

Class.vision Graph Neural Network 118

Key idea: Construct the computational graph by (randomly) sampling at most 𝐻 neighbours

at each hop.

❑ Example:

𝐻 = 2

1st hub neighborhood

Sample 2, 3 | Drop 1

S
a

m
p

le
 t

h
e
 n

e
ig

h
b

o
rh

o
o

d

fr
o

m
 t

h
e
 r

o
o
t

to
 l
e
a

v
e
s

NEIGHBOR SAMPLING

Class.vision Graph Neural Network 119

Key idea: Construct the computational graph by (randomly) sampling at most 𝐻 neighbours

at each hop.

❑ Example:

𝐻 = 2

1st hub neighborhood

Sample 2, 3 | Drop 1

2nd hub neighborhood

Sample 0, 8 | Drop 7

Sample 8, 9 | Drop 0

S
a

m
p

le
 t

h
e
 n

e
ig

h
b

o
rh

o
o

d

fr
o

m
 t

h
e
 r

o
o
t

to
 l
e
a

v
e
s

NEIGHBOR SAMPLING

Class.vision Graph Neural Network 120

Key idea: Construct the computational graph by (randomly) sampling at most 𝐻 neighbours

at each hop.

❑ Example:

𝐻 = 2

1st hub neighborhood

Sample 2, 3 | Drop 1

2nd hub neighborhood

Sample 0, 8 | Drop 7

Sample 8, 9 | Drop 0

❖ K-layer GNN will at most involve ς𝑘=1
𝐾 𝐻𝑘 leaf nodes in computation graph.

REMARKS ON NEIGHBOR SAMPLING

Class.vision Graph Neural Network 121

❑Remark 1: Trade-off in sampling number H

❖Smaller 𝐻 leads to more efficient neighbour aggregation, but results in

more unstable training due to the larger variance in neighbour aggregation.

❑Remark 2: Computational time

❖Even with neighbour sampling, the size of the computational graph is still

exponential with respect to number of GNN layers K.

❖Increasing one GNN layer would make computation 𝐻 times more

expensive.

❑ Remark 3: How to sample the nodes

❖Random sampling: fast but many times not optimal!

❖Random walk with restart

ISSUE WITH NEIGHBOUR SAMPLING

Class.vision Graph Neural Network 122

❑ Issue with neighbour sampling:

➢ The size of computational graph becomes exponentially large w.r.t. the #GNN

layers.

➢ Computation is redundant, especially when nodes in a mini-batch share many

neighbours.

Computation is redundant,

Class.vision Graph Neural Network 123

h
tt

p
s:

//
p

y
to

rc
h
-

g
e
o

m
e
tr

ic
.r

e
a

d
th

e
d

o
c
s.

io
/e

n
/l

a
te

st
/g

e
n
e
ra

te
d

/t
o

rc
h
_
g

e
o

m

e
tr

ic
.n

n
.c

o
n
v.

S
A

G
E
C

o
n
v.

h
tm

l#
to

rc
h
_
g

e
o

m
e
tr

ic
.n

n
.c

o
n
v.

S
A

G

E
C

o
n
v

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAGEConv

One approach to solve the redundancy problem!

https://dl.acm.org/doi/pdf/10.1145/3394486.3403142

https://dl.acm.org/doi/pdf/10.1145/3394486.3403142

CLUSTER-GCN: REVIEW FULL-BATCH GNN

Class.vision Graph Neural Network 125

❑ In full-batch GNN implementation, all the node embeddings are updated together

using embeddings of the previous layer

❑ In each layer, only 2*#(edges) messages need to be

computed.

❑ For K-layer GNN, only 2K*#(edges) messages need

to be computed.

❑ GNN's entire computation is only linear in #(edges)

and #(GNN layers). Fast!

CLUSTER-GCN: INSIGHT FROM FULL-BATCH GNN

Class.vision Graph Neural Network 126

❑ The layer-wise node embedding update allows the re-use of embeddings

from the previous layer.

❑ This significantly reduces the computational redundancy of neighbour

sampling.

❖ Of course, the layer-wise update is not feasible for a large graph due

to limited GPU memory.

CLUSTER-GCN: SUB-GRAPH SAMPLING

Class.vision Graph Neural Network 127

✓ Key idea: We can sample a small subgraph of the large graph and then perform the efficient

layer-wise node embeddings update over the subgraph.

CLUSTER-GCN: SUB-GRAPH SAMPLING

Class.vision Graph Neural Network 128

Key question: What subgraphs are good for training GNNs?

➢ Recall: GNN performs node embedding by passing messages via the edges.

▪ Subgraphs should retain edge connectivity structure of the original

graph as much as possible.

▪ This way, the GNN over the subgraph generates embeddings closer to

the GNN over the original graph.

CLUSTER-GCN: SUB-GRAPH SAMPLING

Class.vision Graph Neural Network 129

Which subgraph is good for training GNN?

➢ Left subgraph:

retains the essential community structure among the 4 nodes

➢ Right subgraph:

drops many connectivity patterns, even leading to isolated nodes

→ Good

→ Bad

CLUSTER-GCN: EXPLOITING COMMUNITY STRUCTURE

Class.vision Graph Neural Network 130

Real-world graph exhibits community structure

➢ A large graph can be decomposed into many small communities.

Key insight [Chiang et al. KDD 2019]:

❑ Sample a community as a subgraph.

❑ Each subgraph retains essential local connectivity pattern of the original

graph.

CLUSTER-GCN: OVERVIEW

Class.vision Graph Neural Network 131

Cluster-GCN consists of two steps:

1. Pre-processing:

Given a large graph, partition it into groups of nodes (i.e., subgraphs).

2. Mini-batch training:

Sample one node group at a time. Apply GNN's message passing over the

induced subgraph.

It is a Vanilla cluster-GCN

https://class.vision/blog/%d8%b2%db%8c%d8%b1%da%af%d8%b1%d8%a7%d9%81-%d8%a7%d9%84%d9%82%d8%a7%db%8c%db%8c-%db%8c%d8%a7-induced-sub-graph-%da%86%db%8c%d8%b3%d8%aa%d8%9f/

CLUSTER-GCN: ISSUES(1)

Class.vision Graph Neural Network 132

❑The induced subgraph removes between-group links.

❑As a result, messages from other groups will be lost during

message passing, which could hurt the GNN's performance.

CLUSTER-GCN: ISSUES(2)

Class.vision Graph Neural Network 133

❑Graph community detection algorithm puts similar nodes together in the

same group.

❑Sampled node group tends to only cover the small-concentrated portion of

the entire data.

ADVANCED CLUSTER-GCN: ISSUES(3)

Class.vision Graph Neural Network 134

Sampled nodes are not diverse enough to be represent the graph structure:

❑As a result, the gradient averaged over the sampled nodes,
1

𝑉𝑐
σ𝑣𝜖𝑉𝑐

∇𝑙𝑣(𝜃),

becomes unreliable.

▪ Fluctuates a lot from a node group to another.

▪ In other words, the gradient has high variance.

❑Leads to slow convergence of SGD

ADVANCED CLUSTER-GCN

Class.vision Graph Neural Network 135

✓ Solution: Aggregate multiple node groups per mini-batch.

❑ Partition the graph into relatively-small groups of nodes.

❑ For each mini-batch:

1. Sample and aggregate multiple node groups.

2. Construct the induced subgraph of the aggregated node group.

3. The rest is the same as vanilla Cluster-GCN (compute node

embeddings and the loss, update parameters)

ADVANCED CLUSTER-GCN

Class.vision Graph Neural Network 136

Why does the solution work?

❑ Sampling multiple node groups

▪ Makes the sampled nodes more representative of the entire nodes.

▪ Leads to less variance in gradient estimation.

❑ The induced subgraph over aggregated node groups

▪ Includes between-group edges

▪ Message can flow across groups.

GRAPHSAGE VS CLUSTER-GCN

Class.vision Graph Neural Network 137

❑ Cluster-GCN is more computationally efficient than neighbour

sampling, especially when #(GNN layers) is large.

❑ But Cluster-GCN leads to systematically biased gradient estimates

(due to missing cross-community edges)

SIMPLIFYING GNNS

Class.vision Graph Neural Network 138

❑We start from Graph Convolutional Network (GCN) [Kipf & Welling ICLR 2017].

❑We simplify GCN by removing the non-linear activation from the GCN

[Wu et all. ICML 2019].

▪ Wu et al. demonstrated that the performance on benchmark is not

much lower by the simplification.

❑ Simplified GCN turns out to be extremely scalable by the model design.

SIMPLIFYING GNNS: RECALL MEAN-POOL IN GCN

Class.vision Graph Neural Network 139

❑ Given: Graph 𝐺 = 𝑉, 𝐸 with input node features 𝑋𝑣 for 𝑣 ∈ 𝑉, where E

includes the self-loop:

▪ 𝑣, 𝑣 ∈ 𝐸 for all 𝑣 ∈ 𝑉.

❑ Set input node embeddings: ℎ𝑣
(0)

= 𝑋𝑣 𝑓𝑜𝑟 𝑣 ∈ 𝑉
❑ For 𝑘 ∈ {𝑂, . . . , 𝐾 − 1}:

▪ For all 𝑣 ∈ 𝑉, aggregate neighbouring information as

❑ Final node embedding: 𝑍𝑣 = ℎ𝑣
(𝑘)

SIMPLIFYING GNNS: RECALL MATRIX FORMULATION OF GCN

Class.vision Graph Neural Network 140

GCN aggregations can be formulated as matrix vector product:

❑ Let 𝑯(𝒌) = [ℎ1
𝑘

… ℎ|𝑣|
(𝑘)

]𝑇

❑ Let 𝑨 be the adjacency matrix (w/ self-loop)

❑ Then:

❑ Let 𝑫 be diagonal matrix where

𝐷𝑣,𝑣 = 𝐷ⅇ𝑔 𝑣 = |𝑁 𝑣 |

❑ The inverse of 𝐷: 𝐷−1 is also diagonal:

𝐷𝑣,𝑣
−1 = 1/|𝑁 𝑣 |

❑ Therefore,

SIMPLIFYING GNNS: RECALL MATRIX FORMULATION OF GCN

Class.vision Graph Neural Network 141

GCN's neighbour aggregation:

In matrix form:

where ሚ𝐴 = 𝐷−1𝐴

Note: The original GCN uses re-normalized version: ሚ𝐴 = 𝐷−1/2𝐴 𝐷−1/2

▪ Empirically, this version of ሚ𝐴 often gives better performance than

𝐷−1𝐴

SIMPLIFYING GNNS

Class.vision Graph Neural Network 142

Simplify GCN by removing ReLU non-linearity:

The final node embedding matrix is given as

SIMPLIFYING GNNS

Class.vision Graph Neural Network 143

❑ Removing ReLU significantly simplifies GCN!

𝐻(𝐾) = ሚ𝐴𝐾𝑋𝑊𝑇

❑ Notice ෩𝑨𝑲𝑿 does not contain any learnable parameters; hence,

 it can be pre-computed.

▪ Efficiently computable as a sequence of sparse-matrix vector products:

▪ Do 𝑋 ← ሚ𝐴𝑋 for K times.

SIMPLIFYING GNNS

Class.vision Graph Neural Network 144

❑ Let ෩𝑿 = ෩𝑨𝑲𝑿 be pre-computed matrix.

Simplified GCN's final embedding is

𝐻(𝐾) = ෨𝑋𝑊𝑇

❑ It's just a linear transformation of pre-computed matrix!

❑ Back to the node embedding form:

❑ Embedding of node 𝑣 only depends on its own (pre-processed)

feature!

SIMPLIFYING GNNS

Class.vision Graph Neural Network 145

❑ Once ෨𝑋 is pre-computed, embeddings of 𝑀 nodes can be generated in time

linear in 𝑀:

▪ Given 𝑀 nodes {𝑣1, 𝑣2, … , 𝑣𝑀}, their embeddings are

SIMPLIFYING GNNS

Class.vision Graph Neural Network 146

COMPARISON WITH OTHER MODELS

Class.vision Graph Neural Network 147

❑ Compared to neighbour sampling:

➢ Simplified GCN generates node embeddings much more

efficiently (no need to construct the giant computational

graph for each node).

❑ Compared to Cluster-GCN:

➢ Mini-batch nodes of simplified GCN can be sampled

completely randomly from the entire nodes (no need to

sample from multiple groups as Cluster-GCN does)

➢ Leads to lower SGD variance during training.

❑ But the model is much less expressive.

COMPARISON WITH OTHER MODELS

Class.vision Graph Neural Network 148

Compared to the original GN models, simplified GCN's expressive

power is limited due to the lack of non-linearity in generating

node embeddings.

COMPARISON WITH OTHER MODELS

Class.vision Graph Neural Network 149

Compared to the original GN models, simplified GCN's expressive

power is limited due to the lack of non-linearity in generating

node embeddings.

Why the performance is good?

https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgd

Qy7imNkDn&t=880

https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn&t=880
https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn&t=880

Class.vision Graph Neural Network 150

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

h
tt

p
s:

//
p

y
to

rc
h
-

g
e
o

m
e
tr

ic
.r

e
a

d
th

e
d

o
c
s.

io
/e

n
/l

a
te

st
/g

e
n
e
ra

te
d

/t
o

rc
h
_
g

e
o

m
e
tr

ic
.

n
n
.c

o
n
v.

S
G

C
o

n
v.

h
tm

l#
to

rc
h
_
g

e
o

m
e
tr

ic
.n

n
.c

o
n
v.

S
G

C
o

n
v

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv

EXAMPLE

Class.vision Graph Neural Network 152

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py

SCALING UP GNNS VIA REMOTE BACKENDS

Class.vision Graph Neural Network 153

❑Using key-value and graph database:

➢ Documentation:
https://pytorch-geometric.readthedocs.io/en/latest/advanced/remote.html

➢ Example:
https://github.com/pyg-team/pytorch_geometric/tree/master/examples/kuzu/papers_100M

https://pytorch-geometric.readthedocs.io/en/latest/advanced/remote.html
https://github.com/pyg-team/pytorch_geometric/tree/master/examples/kuzu/papers_100M

EDGE FEATURES

https://class.vision Graph Neural Networks 154

https://class.vision/

WHY ARE EDGE FEATURES ARE IMPORTANT?

Class.vision Graph Neural Network 155

Edge feature

WHY ARE EDGE FEATURES ARE IMPORTANT?

Class.vision Graph Neural Network 156

WHY ARE EDGE FEATURES ARE IMPORTANT?

Class.vision Graph Neural Network 157

WHY ARE EDGE FEATURES ARE IMPORTANT?

Class.vision Graph Neural Network 158

THE GENERAL PROCESS IN GNNS

Class.vision Graph Neural Network 159

THE GENERAL PROCESS IN GNNS

Class.vision Graph Neural Network 160

THE GENERAL PROCESS IN GNNS

Class.vision Graph Neural Network 161

USING EDGE WEIGHT

Class.vision Graph Neural Network 162

Node Features/embeddings

DIFFERENT EDGE TYPES

Class.vision Graph Neural Network 163

DIFFERENT EDGE TYPES – RELATIONAL GCN

Class.vision Graph Neural Network 164

Relational GCN
Modelling Relational Data with Graph Convolutional Networks, Schlichtkrull et al.

DIFFERENT EDGE TYPES – RELATIONAL GCN

Class.vision Graph Neural Network 165

Class.vision Graph Neural Network 166

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Class.vision Graph Neural Network 167

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.htm

l#torch_geometric.nn.conv.RGCNConv

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNCo

nv.html#torch_geometric.nn.conv.FastRGCNConv

Example: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNConv.html#torch_geometric.nn.conv.FastRGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNConv.html#torch_geometric.nn.conv.FastRGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNConv.html#torch_geometric.nn.conv.FastRGCNConv
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py

DIFFERENT EDGE TYPES – GNN FILM

Class.vision Graph Neural Network 168

GNN-FiLM: Graph Neural Networks with Feature-wise

Linear Modulation

https://arxiv.org/abs/1906.12192
https://arxiv.org/abs/1906.12192

Class.vision Graph Neural Network 169

https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linear-

modulation?ref=recommended

https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linear-modulation?ref=recommended
https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linear-modulation?ref=recommended

Class.vision Graph Neural Network 170

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Class.vision Graph Neural Network 171

h
tt

p
s:

//
p

y
to

rc
h
-

g
e
o

m
e
tr

ic
.r

e
a

d
th

e
d

o
c
s.

io
/e

n
/l

a
te

st
/g

e
n
e
ra

te
d

/t
o

rc
h
_
g

e
o

m
e

tr
ic

.n
n
.c

o
n
v.

F
iL

M
C

o
n
v.

h
tm

l#
to

rc
h
_
g

e
o

m
e
tr

ic
.n

n
.c

o
n
v.

F
iL

M
C

o
n
v

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMConv

DIFFERENT EDGE TYPES- OTHER VARIANTS

Class.vision Graph Neural Network 172

https://arxiv.org/pdf/1906.12192.pdf

https://arxiv.org/pdf/1906.12192.pdf

Class.vision Graph Neural Network 173

MULTIDIMENSIONAL EDGE FEATURES

Class.vision Graph Neural Network 174

MULTIDIMENSIONAL EDGE FEATURES

MULTIDIMENSIONAL EDGE FEATURES: MP-GNN

Class.vision Graph Neural Network 175

MP-GNN

Class.vision Graph Neural Network 176

MP-GNN

Class.vision Graph Neural Network 177

MULTIDIMENSIONAL EDGE FEATURES: PNACONV

Class.vision Graph Neural Network 178

MULTIDIMENSIONAL EDGE FEATURES
OTHER EXAMPLES

Class.vision Graph Neural Network 179

USING EDGE FEATURES IN PYTORCH GEOMETRIC

Class.vision Graph Neural Network 180

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

USING EDGE FEATURES IN PYTORCH GEOMETRIC

Class.vision Graph Neural Network 181

➢edge_weight → GNN Layer can use weight values on the adjacency matrix

➢edge_type → GNN Layer can use different edge types / relations

➢edge_attr → GNN Layer can use edge features

LINK PREDICTION
AND GRAPH AUTOENCODER

https://class.vision Graph Neural Networks 182

https://class.vision/

WHAT IS A RECOMMENDER SYSTEM?

Class.vision Graph Neural Network 183

Content-based filtering Collaborative filtering

COLLABORATIVE FILTERING

Class.vision Graph Neural Network 184

5 1

4 5 1

3 5

1 4 5

2 4 1

BIPARTITE GRAPH

Class.vision Graph Neural Network 185

BIPARTITE GRAPH

Class.vision Graph Neural Network 186

5

1

GRAPH CONVOLUTIONAL MATRIX COMPLETION

Class.vision Graph Neural Network 187

Graph Convolutional Matrix Completion

Rianne van den Berg, Thomas N. Kipf, Max Welling 2017

𝑟 ∈ 𝑅

users items
Learnable transformation

SoftMax

Which edge type

GRAPH CONVOLUTIONAL MATRIX COMPLETION

Class.vision Graph Neural Network 188

Graph Convolutional Matrix Completion

Rianne van den Berg, Thomas N. Kipf, Max Welling 2017

GRAPH AUTOENCODERS (GAE)

Class.vision Graph Neural Network 189

Embedding

Latent spaceEncoder Decoder

A graph convolutional Neural Network

produces a low dimensional embedding representation

ത𝑋 = 𝐺𝐶𝑁 𝐴, 𝑋 = 𝑅ⅇ𝐿𝑈 ሚ𝐴𝑋𝑊0

With ሚ𝐴 = 𝐷−1/2 𝐴 𝐷−1/2

Z = ത𝑋

GRAPH AUTOENCODERS (GAE)

Class.vision Graph Neural Network 190

Encoder

A → [1,4]

B → [4,5]

C → [6,2]

Node embedding in a

latent space with two

dimension.

Decoder

Reconstruct

The input graph

Inner product

Between latent variable Z

WHY INNER PRODUCT?

Class.vision Graph Neural Network 191

1

2

4

3

1 2.4 8.1 0.3

2 0.7 0.6 0.2

3 0.3 9.2 1.2

4 2.1 1.8 0.8

1 2 3 4

2.4 0.7 0.3 2.1

8.1 0.6 9.2 1.8

0.3 0.2 1.2 0.8

Variational Graph Auto-Encoders, 2016

https://arxiv.org/abs/1611.07308

𝑍 𝑍𝑇

https://arxiv.org/abs/1611.07308

WHY INNER PRODUCT?

Class.vision Graph Neural Network 192

1

4

3

1 2.4 8.1 0.3

2 0.7 0.6 0.2

3 0.3 9.2 1.2

4 2.1 1.8 0.8

1 2 3 4

2.4 0.7 0.3 2.1

8.1 0.6 9.2 1.8

0.3 0.2 1.2 0.8

Variational Graph Auto-Encoders, 2016

https://arxiv.org/abs/1611.07308

𝑍 𝑍𝑇4 × 3 3 × 4

1 2 3 4

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

4 ? ? ? ?

Adjacency

2

4 × 4

https://arxiv.org/abs/1611.07308

WHY INNER PRODUCT?

Class.vision Graph Neural Network 193

1

4

3

1 2.4 8.1 0.3

2 0.7 0.6 0.2

3 0.3 9.2 1.2

4 2.1 1.8 0.8

1 2 3 4

2.4 0.7 0.3 2.1

8.1 0.6 9.2 1.8

0.3 0.2 1.2 0.8

Variational Graph Auto-Encoders, 2016

https://arxiv.org/abs/1611.07308

𝑍 𝑍𝑇

2?

4 × 3 3 × 4

1 2 3 4

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

4 ? ? ? ?

Adjacency

4 × 4

https://arxiv.org/abs/1611.07308

HETEROGENEOUS &
KNOWLEDGE GRAPH
EMBEDDING

https://class.vision Graph Neural Networks 194

https://class.vision/

HETEROGENEOUS GRAPHS

Class.vision Graph Neural Network 195

❑ A heterogeneous graph is defined as

▪ Nodes with node types 𝑣𝑖 ∈ 𝑉
▪ Edges with relation types (𝑣𝑖 , r, 𝑣𝑗) ∈ 𝐸

▪ Node type 𝑇(𝑣𝑖)

▪ Relation type 𝑟 ∈ 𝑅

𝐺 = (𝑉, 𝐸, 𝑅, 𝑇)

BIPARTITE GRAPH

Class.vision Graph Neural Network 196

SETTING UP LINK PREDICTION

Class.vision Graph Neural Network 197

SETTING UP LINK PREDICTION

Class.vision Graph Neural Network 198

SETTING UP LINK PREDICTION

Class.vision Graph Neural Network 199

SETTING UP LINK PREDICTION

Class.vision Graph Neural Network 200

SPATIO-TEMPORAL
GRAPH NEURAL NETWORKS

https://class.vision Graph Neural Networks 201

https://class.vision/

20XX Graph Neural Network 202

20XX Graph Neural Network 203

20XX Graph Neural Network 204

20XX Graph Neural Network 205

20XX Graph Neural Network 206

TIME VARYING GRAPH

Class.vision Graph Neural Network 207

𝑮 𝑽, 𝑬, 𝑿𝑽 𝒕 , 𝑿𝑬 𝒕
Static structure, time-varying features

Spatio-temporal graph

𝑮(𝑽(𝒕), 𝑬(𝒕), 𝑿𝑽(𝒕), 𝑿𝑬(𝒕))
Time-varying structure, time-varying features

Dynamic graph

𝑮 𝑽, 𝑬, 𝑿𝑽, 𝑿𝑬

Static structure, static features

HOW DO WE DEAL WITH GRAPHS WITH STATIC STRUCTURE
AND TIME-VARYING FEATURES?

Class.vision Graph Neural Network 208

TRAFFIC FORECASTING

Class.vision Graph Neural Network 209

TRAFFIC FORECASTING

Class.vision Graph Neural Network 210

TRAFFIC FORECASTING

Class.vision Graph Neural Network 211

TRAFFIC FORECASTING

Class.vision Graph Neural Network 212

60 120

10 55

200

900

TIME SERIES

Class.vision Graph Neural Network 213

60 12060 120

10 55

200

900

TIME SERIES

Class.vision Graph Neural Network 214

60 120

TIME SERIES

Class.vision Graph Neural Network 215

60 120𝑋𝑁1,𝑡1

65 130𝑋𝑁1,𝑡2

50 100𝑋𝑁1,𝑡3

40 60𝑋𝑁1,𝑡𝑇

…

T
im

e

N1

Time

S
p

e
e
d

TIME SERIES

Class.vision Graph Neural Network 216

60 120𝑋𝑁1,𝑡1

65 130𝑋𝑁1,𝑡2

50 100𝑋𝑁1,𝑡3

40 60𝑋𝑁1,𝑡𝑇

…

T
im

e

N1

S
p

e
e
d

Time

#
 c

a
rs

 /
 U

n
it

THERE ARE SEVERAL EXISTING MODELS FOR TIME SERIES
FORECASTING

Class.vision Graph Neural Network 217

• Basic models

• ARMA-type models (ARMA, VARIMAX, etc.)

• Basically multi-linear regression over time

• Requires “stationary” generating process

• Neural network-based models

• Recurrent neural networks (LSTM, GRU)

• Temporal convolutions (see 2016 paper)

• Temporal attention (see 2019 paper)

SPATIAL

Class.vision Graph Neural Network 218

60 120

10 55

STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT,
HERE IS AN EXAMPLE IN PSEUDOCODE

Class.vision Graph Neural Network 219

STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT,
HERE IS AN EXAMPLE IN PSEUDOCODE

Class.vision Graph Neural Network 220

Class.vision Graph Neural Network 221

h
tt

p
s:

//
a

rx
iv

.o
rg

/p
d

f/
2
1
0
4
.0

7
7
8
8
.p

d
f

https://arxiv.org/pdf/2104.07788.pdf

Class.vision Graph Neural Network 222

Class.vision Graph Neural Network 223

Class.vision Graph Neural Network 224

T-GCN:A TEMPORAL GRAPH CONVOLUTIONAL NETWORK
FOR TRAFFIC PREDICTION

T-GCN: A Temporal Graph ConvolutionalNetwork for Traffic Prediction, Zhao et all

https://arxiv.org/pdf/1811.05320

PYTORCH GEOMETRIC TEMPORAL

Class.vision Graph Neural Network 225

✓ StaticGraphTemporalSignal

✓ DynamicGraphTemporalSignal

✓ DynamicGraphStaticSignal

Spatiotemporal Signal Splitting

Temporal GNN Layers Datasets

https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html

https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html

THANK YOU

Alireza Akhavanpour

https://Class.vision

226

https://class.vision/

SOURCES

CS224W: Machine Learning with Graphs

https://web.stanford.edu/class/cs224w/

Intro to graph neural networks (ML Tech Talks)

https://www.youtube.com/watch?v=8owQBFAHw7E&t=253s

Introduction to graph neural networks (made easy!)

https://www.youtube.com/watch?v=cka4Fa4TTI4

https://www.topbots.com/graph-convolutional-networks/

How to use edge features in Graph Neural Networks (and PyTorch Geometric)

https://www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7O8Z&index=5

227https://Class.vision Graph Neural Network

https://web.stanford.edu/class/cs224w/
https://www.youtube.com/watch?v=8owQBFAHw7E&t=253s
https://www.youtube.com/watch?v=cka4Fa4TTI4
https://www.topbots.com/graph-convolutional-networks/
https://www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7O8Z&index=5
https://class.vision/

	Slide 1: Graph neural network
	Slide 2: AGENDA
	Slide 3: Graph terminology
	Slide 4: Graph definition
	Slide 5: Graph definition
	Slide 6: Types of Graph
	Slide 7: Types of Graph
	Slide 8: Types of Graph
	Slide 9: Graph Example
	Slide 10: Graph Example
	Slide 11: Storing Graph
	Slide 12: Storing Graph
	Slide 13: Storing Graph
	Slide 14: Edge features
	Slide 15: You can model complex systems, depending on how you choose to define the graph
	Slide 16: Graph Degree
	Slide 17: Graph Degree
	Slide 18: Graph Degree
	Slide 19: Laplacian of graph
	Slide 20: Normalized graph
	Slide 21: Graph usage And applications
	Slide 22: Graph data is everywhere
	Slide 23: Molecules are graphs!
	Slide 24: GNNs for molecule classification
	Slide 25: Follow-up study
	Slide 26: Success story!
	Slide 27: Success story!
	Slide 28: Success story!
	Slide 29: Success story!
	Slide 30: Traffic maps are graphs!
	Slide 31: Deepmind’s ETA problem!
	Slide 32: Recommender systems
	Slide 33: Graph Challenge and problems
	Slide 34: Why use graphs? Why not just use MLP or attention and learn “everything” end-to-end?
	Slide 35: Problem: Graph data is different
	Slide 36: Problem: Graph data is different
	Slide 37: Problem: Graph data is different
	Slide 38: Other Challenges with graph convolutions
	Slide 39: Learning in graph
	Slide 40: Representation learning
	Slide 41: Learning in graph representation learning
	Slide 42: Learning in graph representation learning
	Slide 43: Learning in graph representation learning
	Slide 44: Learning in graph representation learning
	Slide 45: What types of problems can GNNs solve?
	Slide 46: Learning in graph representation learning
	Slide 47: Learning in graph representation learning
	Slide 48: Learning in graph representation learning
	Slide 49: How to encode and decode?
	Slide 50: How to encode and decode?
	Slide 51: How to encode and decode?
	Slide 52: Drawbacks
	Slide 53: Deep vs shallow
	Slide 54: Representation learning
	Slide 55: Graph convolutional network
	Slide 56: Understanding Graph Neural Networks
	Slide 57: Message passing
	Slide 58: Message passing
	Slide 59: Message passing
	Slide 60: Message passing
	Slide 61: Message passing
	Slide 62: Message passing
	Slide 63: Message passing
	Slide 64: Message passing
	Slide 65: Message passing
	Slide 66: Message passing
	Slide 67: Message passing
	Slide 68: The mean-pooling update rule
	Slide 69: GCN Graph convolutional network
	Slide 70: Intuition and the Math's behind
	Slide 71: Intuition and the Math's behind
	Slide 72: Intuition and the Math's behind
	Slide 73: Intuition and the Math's behind
	Slide 74: Intuition and the Math's behind
	Slide 75: Intuition and the Math's behind
	Slide 76: Problems!
	Slide 77: Problems!
	Slide 78: Problems!
	Slide 79: Problems!
	Slide 80: Intuition and the Math's behind
	Slide 81: Intuition and the Math's behind
	Slide 82: Intuition and the Math's behind
	Slide 83: Intuition and the Math's behind
	Slide 84: Intuition and the Math's behind
	Slide 85: Intuition and the Math's behind
	Slide 86: Intuition and the Math's behind
	Slide 87: The number of layers
	Slide 88: How many layers should we stack the GCN?
	Slide 89: GNN variants
	Slide 90
	Slide 91
	Slide 92: Binary masks for node-level prediction
	Slide 93: Binary masks for node-level prediction
	Slide 94: Global Graph pooling
	Slide 95: Global Graph pooling
	Slide 96: Global Graph pooling
	Slide 97: Batching with Graphs
	Slide 98: Batching with Graphs
	Slide 99: Batching with Graphs
	Slide 100: Batching with Graphs
	Slide 101: Batching with Graphs
	Slide 102: Batching with Graphs
	Slide 103: Scaling up Graph neural Networks to large graphs
	Slide 104: Graphs in modern applications
	Slide 105: Graphs in modern applications
	Slide 106: Graphs in modern applications
	Slide 107: Graphs in modern applications
	Slide 108: What is in Common?!
	Slide 109: Problem!
	Slide 110: Solutions! Some methods for scaling up GNNs
	Slide 111: Graphsage neighbor sampling
	Slide 112: Graphsage neighbor sampling
	Slide 113: Graphsage neighbor sampling
	Slide 114: Graphsage neighbor sampling
	Slide 115: Stochastic Training of GNNs
	Slide 116: Issue Stochastic Training
	Slide 117: Issue Stochastic Training
	Slide 118: Neighbor sampling
	Slide 119: Neighbor sampling
	Slide 120: Neighbor sampling
	Slide 121: Remarks on Neighbor sampling
	Slide 122: Issue with neighbour sampling
	Slide 123
	Slide 124
	Slide 125: Cluster-GCN: review full-batch GNN
	Slide 126: Cluster-GCN: Insight from full-batch GNN
	Slide 127: Cluster-GCN: Sub-graph sampling
	Slide 128: Cluster-GCN: Sub-graph sampling
	Slide 129: Cluster-GCN: Sub-graph sampling
	Slide 130: Cluster-GCN: Exploiting community structure
	Slide 131: Cluster-GCN: Overview
	Slide 132: Cluster-GCN: Issues(1)
	Slide 133: Cluster-GCN: Issues(2)
	Slide 134: Advanced Cluster-GCN: Issues(3)
	Slide 135: Advanced Cluster-GCN
	Slide 136: Advanced Cluster-GCN
	Slide 137: Graphsage VS Cluster-GCN
	Slide 138: Simplifying GNNs
	Slide 139: Simplifying GNNs: Recall mean-pool in GCN
	Slide 140: Simplifying GNNs: Recall Matrix Formulation of GCN
	Slide 141: Simplifying GNNs: Recall Matrix Formulation of GCN
	Slide 142: Simplifying GNNs
	Slide 143: Simplifying GNNs
	Slide 144: Simplifying GNNs
	Slide 145: Simplifying GNNs
	Slide 146: Simplifying GNNs
	Slide 147: Comparison with other models
	Slide 148: Comparison with other models
	Slide 149: Comparison with other models
	Slide 150
	Slide 151
	Slide 152: Example
	Slide 153: Scaling Up GNNs via Remote Backends
	Slide 154: Edge features
	Slide 155: Why are edge features are important?
	Slide 156: Why are edge features are important?
	Slide 157: Why are edge features are important?
	Slide 158: Why are edge features are important?
	Slide 159: The general process in GNNs
	Slide 160: The general process in GNNs
	Slide 161: The general process in GNNs
	Slide 162: Using Edge weight
	Slide 163: Different edge types
	Slide 164: Different edge types – relational GCN
	Slide 165: Different edge types – relational GCN
	Slide 166
	Slide 167
	Slide 168: Different edge types – GNN FILM
	Slide 169
	Slide 170
	Slide 171
	Slide 172: Different edge types- other variants
	Slide 173: Multidimensional Edge features
	Slide 174: Multidimensional Edge features
	Slide 175: Multidimensional Edge features: MP-GNN
	Slide 176: MP-GNN
	Slide 177: MP-GNN
	Slide 178: Multidimensional Edge features: pNAConv
	Slide 179: Multidimensional Edge features Other examples
	Slide 180: Using edge features in pytorch geometric
	Slide 181: Using edge features in pytorch geometric
	Slide 182: Link Prediction and Graph autoencoder
	Slide 183: What is a recommender system?
	Slide 184: Collaborative filtering
	Slide 185: Bipartite Graph
	Slide 186: Bipartite Graph
	Slide 187: Graph Convolutional Matrix Completion
	Slide 188: Graph Convolutional Matrix Completion
	Slide 189: Graph Autoencoders (GAE)
	Slide 190: Graph Autoencoders (GAE)
	Slide 191: Why inner product?
	Slide 192: Why inner product?
	Slide 193: Why inner product?
	Slide 194: Heterogeneous & Knowledge Graph Embedding
	Slide 195: Heterogeneous graphs
	Slide 196: Bipartite graph
	Slide 197: Setting up link prediction
	Slide 198: Setting up link prediction
	Slide 199: Setting up link prediction
	Slide 200: Setting up link prediction
	Slide 201: spatio-temporal graph neural networks
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207: Time varying graph
	Slide 208: How do we deal with graphs with static structure and time-varying features?
	Slide 209: Traffic Forecasting
	Slide 210: Traffic Forecasting
	Slide 211: Traffic Forecasting
	Slide 212: Traffic Forecasting
	Slide 213: time series
	Slide 214: time series
	Slide 215: time series
	Slide 216: time series
	Slide 217: There are several existing models for time series forecasting
	Slide 218: Spatial
	Slide 219: STGNNs are fairly straightforward to implement, here is an example in pseudocode
	Slide 220: STGNNs are fairly straightforward to implement, here is an example in pseudocode
	Slide 221
	Slide 222
	Slide 223
	Slide 224: T-GCN:A Temporal Graph Convolutional Network for Traffic Prediction
	Slide 225: PyTorch Geometric Temporal
	Slide 226: THANK YOU
	Slide 227: sources

