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GRAPH TERMINOLOGY

What is Node, Edge, and ...

How we can store graphs?
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% GRAPH DEFINITION

Q Nodes

ey Edges
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GRAPH DEFINITION

Q Nodes

ey Edges

i Node Features
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TYPES OF GRAPH

* Undirected graph
* Directed graph
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TYPES OF GRAPH

 Undirected graph <= OF
* Directed graph ==p
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TYPES OF GRAPH

 Homogeneous graph
* Heterogeneous graph

Homogeneous Heterogeneous

https://Class.vision Graph Neural Network
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GRAPH EXAMPLE

I—> FEATURE VECTORS

6=WEu \ /
L' EDGES (Adjacency, Weight) = (A,W) |

> VERTECIES (NODES)

Nodes
Social media accounts

— Edges

People connection

~ Node Features
| Age, Gender, ...
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I—> FEATURE VECTORS

E,u
L' EDGES (Adjacency, Weight) = (A,W)

> VERTECIES (NODES)

G = (V,

GRAPH EXAMPLE

Nodes
Social media accounts

— Edges

People connection

~ Node Features
| Age, Gender, ...

Undirected graph <= OF =

Facebook

Directed graph 9

Instagram

https://Class.vision

Graph Neural Network
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% STORING GRAPH

0] 1 Source Node, Target Node
\ / (0,1)]
I ©2
\‘) (0,3)
/ (1,0)
Edge list:  [(2,0)
Homogeneous (2,2)
(2,3)
(3,0)
1(3,2)]
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N

Homogeneous

https://Class.vision

STORING GRAPH

Adjacency Matrix:

w N = O

=|l=|=|lOo|O

O|OC|O | |=

O|=|O | |N

== ||

Graph Neural Network

VXV
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—
N
Ne—

Homogeneous

2

1
Adjacency Matrix:

We can use weight instead of Boolean!
To show how strong the connection is!

https://Class.vision Graph Neural Network

STORING GRAPH

w N = O

1 2 3

2 1.5 4

0 0 0
1.5 0 1
12 0 0 1
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EDGE FEATURES

Q Nodes

ey Edges

Node Features

Edge Features

Graph Neural Network
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YOU CAN MODEL COMPLEX SYSTEMS, DEPENDING ON HOW

YOU CHOOSE TO DEFINE THE GRAPH

JEdge type:
weighted vs binary
JEdge directionality:
undirected vs directed
JFeatures:
None, node-based, edge-based
dTemporal Aspects:
Features, topology
dOthers:
Multi-graphs, hypergraphs, complex networks
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GRAPH DEGREE
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GRAPH DEGREE

fc&nwa:

01100
10110
11001
01001

00110
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GRAPH DEGREE

] ) ) a 01100
b 10110

x=|c A=[11001

c - d 01001

e 00110

Degree matrix (D) is a diagonal matrix defining number of
connection per node

200007 Degree matrix shows influence of each node on the

03000 whole graph
D=|00300
00020
10000 2-

Graph Neural Network
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Graph Neural Network

LAPLACIAN OF GRAPH

01100
10110
11001
01001

200007
03000
00300
00020

00110

Laplacian matrix (L) isaL=D — AORL =D — W in weighted matrix

0000 2-
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NORMALIZED GRAPH

We can decide to show the relation between of the
nodes, with any of the following matrices:

A LA,L
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GRAPH USAGE
AND APPLICATIONS
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GRAPH DATA IS EVERYWHERE

6

Brain cortex

Airports connection

®
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MOLECULES ARE GRAPHS!

A very natural way to represent molecules is as a graph
* Atoms as nodes, bonds as edges
* Features such as atom type, charge, bond type..

HO

https://Class.vision Graph Neural Network
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GNNS FOR MOLECULE CLASSIFICATION

Interesting task to predict is, for example, whether the

molecule is a potent drug

* Can do binary classification on whether the drug will
inhibit certain bacteria. (E.coli)
* Train on a curated dataset for compounds where
response is known.

https://Class.vision

=

HO

Molecule )

Graph Neural Network

— R — e

o

Inhibits E.coli?
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FOLLOW-UP STUDY

* Once trained, the model can be applied to any
molecule.
o Execute on a large dataset of known candidate
molecules.
o Select the —top-100 candidates from your GNN
model.
o Have chemists thoroughly investigate those (after
some additional filtering).
* Discover a previously overlooked compound that is @
highly potent antibiotic!

https://Class.vision Graph Neural Network
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SUCCESS STORY!

Cell P

CellPress

Volume 180, Issue 4, 20 February 2020, Pages 688-702.e13

Article

A Deep Learning Approach to Antibiotic
Discovery

4

¥

Andres Cubillos-Ruiz ' 2 ®, Nina M. Donghia ! ®, Craig R. MacNair é, Shawn French ,
Lindsey A. Carfrae ®, Zohar Bloom-Ackermann ? 7, Victoria M. Tran ?, Anush Chiappino-Pepe >/,
Ahmed H. Badran 2, lan W. Andrews ! 2>, Emma J. Chory ! %, George M. Church ° 7 8,

Eric D. Brown ®, Tommi S. Jaakkola * ¢, Regina Barzilay > *® 2 =, James ). Collins 1 238° 11

Jonathan M. Stokes ! 23, Kevin Yang * * 1, Kyle Swanson 3 * 1%, Wengong Jin 3

2 X
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SUCCESS STORY!

nature

NEWS . 20 FEBRUARY 2020

Powerful antibiotics discovered using Al

Machine learning spots molecules that work even against ‘untreatable’ strains of
bacteria.
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SUCCESS STORY!

cribe
S COMPANIES TECH MARKETS GRAPHICS OPINION WORK & CAREERS LIFE & ARTS HOW TO SPEND IT

:

CORONAVIRUS BUSINESS UPDATE

Get 30 days’ complimentary access to our Coronavirus Business
Update newsletter

PO lintelligence . Al

tobotics ‘Death of the office’ homeworking
Machi claims exaggerated

bacter

NEWS

Anti-social robots harr
increase social distancir NS of

Artificial intelligence C+ Add to myFT)

Al discovers antibiotics to treat drug-resistant
diseases

Machine learning uncovers potent new drug able to kill 35 powerful bacteria

https://Class.vision Graph Neural Network

p FINANCIAL TIMES
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SUCCESS STORY!

B B Q Sign in News Sport Reel Worklife Travel Future

e N E\A/S

Home Video World UK Business Tech Science Stories Entertainment & Arts

NEWS
PO‘Ilntellig T Our nev.v gulde
i for getting ahead
acnl
bacter
Artific

Scientists discover powerful antibiotic

Al ysing Al
dis
® 21 February 2020 «§ Share
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TRAFFIC MAPS ARE GRAPHS!

Transportation maps (e.g. the ones found on Google Maps)
naturally modeled as graphs.

\/
T

e

Nodes could be intersections, and edges could be roads.

(Relevant node features: road length, current speeds, historical speeds)

https://Class.vision Graph Neural Network
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DEEPMIND’S ETA PROBLEM!

Partition candidate route into super-
segments, sampled proportionally to
(est.) traffic density.

Run GNN on super-segment graph to
estimate estimated time of arrival (ETA)
(graph regression).

https://class.vision/blog// sl §- as—aSli- Sl j-cw 855
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Graph Neural Network
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RECOMMENDER SYSTEMS

A common task on social networks is recommendation.

Based on a user's preferences,
content

recommend new

Can leverage existing links as adjacency input to a

(link-prediction) GNN!

Major issue: our methods (so far) assume the graph is
processed all-at- once! (one solution is GraphSAGE)

https://Class.vision

Graph Neural Network

Source pin

/ Successful

recommendation

T

Bad
recommendation
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GRAPH CHALLENGE
AND PROBLEMS

33
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WHY USE GRAPHS?
WHY NOT JUST USE MLP OR ATTENTION AND LEARN
“EVERYTHING” END-TO-END?

|
">

Increasing model structure

20XX PRESENTATION TITLE 34
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Challenge 1: Data size and shape

PROBLEM: GRAPH DATA IS DIFFERENT

It should be Size independent

20XX

PRESENTATION TITLE
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Challenge 2: Isomorphism

20XX

PROBLEM: GRAPH DATA IS DIFFERENT

It should be Permutation invariance

We cannot feed adjacency matrix to MLP

PRESENTATION TITLE
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Challenge 3: Grid structure

B r
|

Q000000000
Q000000000
Q000000000
Q000000000
Q000000000
OJCICNCICICICICIONG,

20XX

PROBLEM: GRAPH DATA IS DIFFERENT

It should be in Non-Euclidean space

PRESENTATION TITLE
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//
% OTHER CHALLENGES WITH GRAPH CONVOLUTIONS

Desirable properties for a graph convolutional layer:

L Computational and storage efficiency (~O(V + E))
JFixed number of parameters (independent of input size)
Localisation (acts on a local neighbourhood of a node)
W Specifying different importances to different neighbours
U Applicability to inductive problems.
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LEARNING IN GRAPH
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REPRESENTATION LEARNING

GNN

TTTTTTTTTTTTTTTTT



LEARNING IN
GRAPH REPRESENTATION LEARNING
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LEARNING IN
GRAPH REPRESENTATION LEARNING

v" Node Prediction
(Node-level Prediction)

=)
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LEARNING IN
GRAPH REPRESENTATION LEARNING

v" Node Prediction
(Node-level Prediction)

‘ v" Link Prediction

(Edge-level prediction)

PRESENTATION TITLE 43
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LEARNING IN
GRAPH REPRESENTATION LEARNING

v" Node Prediction
(Node-level Prediction)

v’ Link Prediction
(Edge-level prediction)

v Graph representation
(Graph-level prediction)




WHAT TYPES OF PROBLEMS CAN GNNS SOLVE?

Unsupervised
* Node, Edge, or Graph clustering
- Use embeddings to find “similar” nodes, edges, or graphs
* Link Prediction
* Graph Generation

Supervised
* Node, Edge, or Graph classification / regression
- Use embeddings to predict based on known data

“A Fair Comparison of Graph Neural Networks for Graph Classification”, ICLR 2020
“Revisiting Graph Neural Networks for Link Prediction” (2020)



LEARNING IN
GRAPH REPRESENTATION LEARNING
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% LEARNING IN
GRAPH REPRESENTATION LEARNING

———_————~
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Goal: Similarity(u, v) = Similarity(Z,, Z,,)
Scu, v) = Sy(Z,, Z,)

Embedding space
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LEARNING IN
GRAPH REPRESENTATION LEARNING

. Enc(v)
¢.' -7 Zv
] - v
. n Encoding
pQ . _o----T Tz,
P S Enc(u)
Goal: Sg(u, v) = Sy(Zy, Zy) Embedding space

9 U How to perform Encoding?
m < What is the meaning of similarity ?

PRESENTATION TITLE
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% HOW TO ENCODE AND DECODE?

Encoder

—

Embedding space

20XX PRESENTATION TITLE 49
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HOW TO ENCODE AND DECODE?

Encoder Decoder
A . A
_—-==- Dec(Z,Z,) = How simmilarZ, and Z,, are?
- - 7

; ; Enc(v) _ /___r~ 7

- == ’

\i Vc’ . Z, _- < A positive number to show the similarity
VEENG 7 Encoding _-X

\§U. - -
\ oo -~7 Z
a9 Enc(u) b

Embedding space

Sc(u, v) = Sy(Z,, Z,)

20XX

0(2y, 2y) = z ||SE(Zvr zy) — S¢ (v, u)”z

(v,u)ev

PRESENTATION TITLE
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% HOW TO ENCODE AND DECODE?

Encoder Decoder

—-=—- Dec(Z,Z,) = How simmilarZ, and Z, are?

- 4
-
E—nc—(\Q ] = — / ) //
' YA e A positive number to show the similarity
V . v -
Encoding _-"
L; - - - -2 -
B — Zu
Enc(u)
Embedding space
Matrix factorization -------=-=-=--=-=-—-——-——~—~——~——~————- > Inner product Z1 Z,
Look-up table -=-=-=-====-=------mm oo > Inner product Z1Z,

Random Walk - - - - - - o e e » Decode statistic of random walk
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% DRAWBACKS

Encoder Decoder

—-=—- Dec(Z,Z,) = How simmilarZ, and Z, are?

- Ve
-
Y4
Enc_(\Q N P
, = - - e s I . . .
v Z, _- A positive number to show the similarity
i -
Encoding -
U -
N e e e = — -
Zy

Embedding space

No parameter sharing: Computationally expensive
No semantic information: Integration of Feature nodes are difficult
Not Inductive: Cannot predict embedding for unseen data (Inherently Transudative)
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% DEEP VS SHALLOW

Older methods (“shallow”, non-neural network models)
Deepwalk, node2vec

Generally fallen out of favor with researchers because:
* No parameter sharing (bad scaling, overfitting)
* Transductive (only work with nodes present during training)

GNNs solve these problems, they can
v Share parameters
v’ Can generalize to inductive tasks

inductive and transductive!
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REPRESENTATION LEARNING

Message passmg layers
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% GRAPH CONVOLUTIONAL NETWORK

X
Y
J

IXIAIX
XIX
R

133
y
g
/
AN

TTTTTTTTTTTTTTTTT


https://arxiv.org/pdf/1901.00596.pdf

UNDERSTANDING GRAPH NEURAL NETWORKS

GNNs were originally based on 2-step message passing

TARGET NODE @

| @
. | ® — AGGREGATE |« ®-
‘ S Vo

INPUT GRAPH

. Aggregate :

Pass information (the “message”) from a target node’s neighbors to the target node
Update:

Update each node’s features based on “message” to form an embedded representation

20XX PRESENTATION TITLE 56



MESSAGE PASSING

h, = UPDATE (h, ,AGREGATE ({h,,¥ v € N(w)}))

h = node features / embeddings

20XX

Aggregate function operates over sets, must be permutation
invariant or permutation equivariant

PRESENTATION TITLE
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MESSAGE PASSING

h, = UPDATE (h, ,AGREGATE ({h,,¥ v € N(w)}))

h = node features / embeddings

Aggregate function operates over sets, must be permutation
invariant or permutation equivariant

h,=o0 (Wselfhu + Wneigh Z hv)
vEN(u)

20XX

PRESENTATION TITLE
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MESSAGE PASSING

h,=o0 (Wselfhu + Wneigh Z hv)
vEN(u)

|x1 |x2|x3|x4| |

|x1 |x2|x3|x4| | 3
1

|x1|x2 |x3|x4| |

|x1 Ixz |x3 |x4| |

4

|x1 Ixz |x3|x4| |

2

20XX PRESENTATION TITLE
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MESSAGE PASSING

h,=o0 (Wselfhu + Wheign z hv>
v EN(u)

|x1 |x2|x3|x4| |

20XX

PRESENTATION TITLE
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MESSAGE PASSING

hy=o0 <Wselfhu + Wheign Z hv>
v EN(u)

|x1 |x2|x3|x4| |

|x1|Xz|x3|x4| | 3
1 O-(W _I_ W i |X1|x2|x3|x4| |
EA BN BN EN I Self E21E54 E5Y ) I Tlel,gh|x [x |x+|x| |
1§j42143144
4

|x1 Ixz |x3|x4| |

2 -_ |X1|x2|x3|x4| |

20XX PRESENTATION TITLE
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MESSAGE PASSING

h,=o0 Wselfhu + Wneigh Z

hy

v EN(u)
|x1|x2|x3|x4| | |x1|x2|x3|x4| |
1 £ B £ 3 %1 1 Y £ 3
1 1
|x1|x2|x3|x4| | |x1|x2|x3|x4| |
|x1|x2|x3|x4| | 5 |x1|x2|x3|x4| |
|x1|x2|x3|x4| | |x1|x2|x3|x4| |
2 2

20XX

PRESENTATION TITLE

62



MESSAGE PASSING

h,=o0 Wselfhu + Wneigh

Iy oo foes e | - |
1 £ B £ 3
1
1 E% BN E
51 %4 £ £ I
AR FAA I
2

20XX

hy

vEN(u)

|x1|x2|x3|x4| |

| 1| 2|x3|x4| |
xq |x / 3
1

|x1 |x2|x3|x4| |

5

1 Bl -]

|x1|x2 |x3|x4| |

2

PRESENTATION TITLE

|x1|x2|x3|x4| |

|x1|x2|x3|x4| |

ey beofeafea] . |
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MESSAGE PASSING

h,=o0 Wselfhu + Wneigh

Iy oo foes e | - |
1 £ B £ 3
1
1 E% BN E
51 %4 £ £ I
AR FAA I

2

20XX

hy

vEN(u)
xq | Jxaxa] -
£ E% B2 A | | [oe e, sl ] .. ]
xq |2 fxs|xa] -
EERIER A | 3 A 3
1 1
xq|xp|xafxg] ..
£ £ R A | AR
21 Loy £ B
5 e b s [ | | 5 AR
4
xq |2 bealxa]
EAEA A EA | AR AN
2 2

PRESENTATION TITLE

64



MESSAGE PASSING

The dimensions can be different

h(kg) W(k+1)h K W(k+1) hk Len(hX) = len(hk*)
u = 0| Wserphy + Wheign v
e e, s |xea| .. B0 2 B B [, [, Pealxe ] - ]
B34 B £ 3 £21 E5Y EY N 3 20 %3 £ 21 3
1 1 1
|x1|x2|x3|x4| | |x1|x2|x3|x4| | |x1|x2|x3|x4| |
A A I 5 %1 1 £ B 5 AR
|x1|x2|x3|x4| | |x1|x2|x3|x4| | |x1|x2|x3|x4| | 4
2 2

v' The local feature aggregation can be compared to learnable CNN kernels:
https://distill.pub/2021/gnn-intro/

20XX PRESENTATION TITLE
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MESSAGE PASSING

h(*+1) = yppaTE®) (h,ﬁf'), AGGREGATE®) ({h(®) vy € N(U)})>

hgcﬂ) (W(j;rl)hk—l—W(kH) Z h(k))

S neigh
vEN (u)

» h = node features / embeddings
» k = number of hops

Each node’s updated value becomes a weighting of its previous value + a weighting of its neighbor’s values

The choice to sum over neighboring nodes isn’t the only valid choice, other choices include mean, max,
concatenation, etc.

20XX PRESENTATION TITLE 66



MESSAGE PASSING

h(*+1) = yppATE®) (hﬁf”'), AGGREGATE®) ({h{}, Vv € N(u)}))

D = o (WIAFDRE 4 WD S 40)
vEN (u)

O Collapse Wself and Wneigh into W by adding self-loops to the adjacency matrix A

H(+D — 0((A + I)H<k>w<‘“+1))

This method reduces message passing to relatively simple
matrix multiplication

20XX PRESENTATION TITLE
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% THE MEAN-POOLING UPDATE RULE

HED = o ((A+ DHOW kD)

J Problem: Multiplication by A+l may increase the scale of the output features.

v Solution: We need to normalize appropriately:
H*+D = g(D~1(A + DHWOW k+1))

We arrive at the mean-pooling update rule:

1
pHD) = E Wh
T LN
JEN;

which is simple but versatile (common for inductive problems!).




GCN GRAPH CONVOLUTIONAL NETWORK

H(+D — U((A + I)H(k)W(k“))

H D — J(AH<k>W<k+1>) o

A=D+I)z2(I+A)(D+I)"

Node-wise, this can be written as follows:

20XX

“Original” GNN
(Merkwirth, 2005 + Scarselli et al., 2009)

(Kipf + Welling, 2016)

(] [

Normalizes by # of nodes in neighborhood

1
pk+1) — 4 z Wh]’.C oWy
Omm el
jen: [INgI| ] MO= o 90

cixed
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INTUITION AND THE MATH'S BEHIND

© oo ol»
» O OO w®
= O 0o oln
O B R O D

O kR m

m o N ® >

Adjacency matrix A

https:/www.topbots.com/graph-convolutional-networks/

20XX

PRESENTATION TITLE

A |-11732 [a2
B |04 }s.1 12|
¢ (12 [13 |21 |
D |14 i-1.2 25 |
E |14 25 |45
Feature vector X
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INTUITION AND THE MATH'S BEHIND

m oo ® >
o o ool
= O 00w
= 0O 00N

1

Graph G

H(k+1) — g(AH(k)W(kH))

hGHD = 6 % Whf

JEN;

20XX

1

1

Adjacency matrix A

O = » oo

1

O M = m

PRESENTATION TITLE

A [-1132 (a2
B |04 51 |12
c (12 [13 21
D |14 [12(25 |
E |14 125 |45 |
Feature vector X

71



INTUITION AND THE MATH'S BEHIND

m oo ® >
o o ool
= O 00w
= 0O 00N

1

Graph G

H(k+1) — g(AH(k)W(kH))

hGHD = 6 % Whf

JEN;

20XX

1

1

Adjacency matrix A

O = » oo

1

O M = m

PRESENTATION TITLE

A [-1132 (a2
B |04 51 |12
c (12 [13 21
D |14 [12(25 |
E |14 125 |45 |
Feature vector X
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% INTUITION AND THE MATH'S BEHIND

A B CDE /”_\
A0 00 0(1‘/A\-\1.1 32 |42
BOOO1T B |04 |51 |-1.2
Coo001]1 M ¢ |2 13 |21 | m—
DO(1/1 0|1 D |14 |-12/|25
Ejal1/a]1lo E (1425 |45
Graph G
Adjacency matrix A Feature vector X

H(k+1) — U(AH(R)W(RH))

hGHD = 6 % Whf

JEN;
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INTUITION AND THE MATH'S BEHIND

A BCD E
A0 OO O0(1 A |[-1.1]3.2 |42
B/O OO 11 B |04 |51 |-1.2
C _()_(_)__'_()_1_11_“* c |12 [13[21 | mmm
DO1101 D 14 |-1.2|25
1 | . ——
E 11110 | E |14 (25745
Graph G :
Adjacency matrix A Feature vector X

H(k+1) — U(AH(R)W(RH))

hGHD = 6 % Whf

JEN;
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INTUITION AND THE MATH'S BEHIND

RN

m O 0O @ >

A B CDE
Ao o 0 o1} A [21]
B O OO 11 B |04 51 [-1.2
C 0:0 .0 A1 1‘x cC |12 ;1.3 2.1 =
DIO(1 |1 .0|1 D |14 12|25
E 71 1 1 1 ”0 | E (14 25 .?“3\_/‘
Graph G —
Adjacency matrix 4 Feature vector X

H(k+1) — g(AH(k)W(kH))

hGHD = 6 % Whf

JEN;
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PROBLEMS!

1. We miss the feature of the node itself. For example, the first row of the result matrix should
contain features of node A too.



PROBLEMS!

1. We miss the feature of the node itself. For example, the first row of the result matrix should
contain features of node A too.

HED = g ((4+ DHOW D)

ABCDE ABCODE
A0 00 O|1] 10000 Al10 001
BI0OOOZ11 0100 o B(o|10 11
cloojoaa| == jpo100 = clojorjaa
DO0O110 1 00010 D0 [1(11]1
El11/1 10 0000 1 El1l1l1]1a

Adjacency matrix A Identity matrix I New Adjacency matrix A
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PROBLEMS!

1. We miss the feature of the node itself. For example, the first row of the result matrix should
contain features of node A too.

2. Instead of sum() function, we need to take the average, or even better, the weighted average of
neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using
the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes
tend to get small aggregate vectors, which may later cause exploding or vanishing
gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale
of input data. Thus, we need to normalize these vectors to get rid of the potential issues.



2.

PROBLEMS!

Instead of sum() function, we need to take the average, or even better, the weighted average of
neighbors’ feature vectors. Why don’t we use the sum() function? The reason is that when using
the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes
tend to get small aggregate vectors, which may later cause exploding or vanishing

gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale
of input data. Thus, we need to normalize these vectors to get rid of the potential issues.

A B C D E

A o o 0o 1
B |0 o |1 |1
c o o 1 1
D 0 1 1 1
E (1 [2 (2 [2

~

New adjacency matrix A

20XX

o o 0o o
3 0 0 0
0 3 0 0 =B
0o 0 4 o
0o o 0o 5

New degree matrix D
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H*+D = g(D71(A + HH®W Kk+1)

pk+1) — 4 z

20XX

JEN;

1
|N;|

INTUITION AND THE MATH'S BEHIND

Graph G

k
Wh!

A BCDE
A1l 0—-0 01 A -1.1 3.2 4.2
B O 1011 B |04 51 -12
cloo111 x c |12 13 (21|
DO 1111 D (14 |-12]25 |
EM1 1111 E |14 25 a5
New Adjacency matrix 4 Feature vector X
\ )
X ||
120 0 0 0 A
SNSRI 8
0O 0 1/30 0 x c
0o 0 0 1/4 0 D
o 0 0 0 15 "

D! ”Sum of neighbors” matrix
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% INTUITION AND THE MATH'S BEHIND

* So far, so good!



% INTUITION AND THE MATH'S BEHIND

* So far, so good!
* Intuitively, it should be better if we treat high and low degree nodes differently.



INTUITION AND THE MATH'S BEHIND

B CDE
/210 0 0 0 P:lz"a"o 01 -11[32 [a2
0 1/3 0 0 ‘/—B§0I'1l0 1 11 B (04 51 -12
o 0 130 [0 ¥ ¢ Oi!Oil 11 M c 1213 21
0O 0 0 140 D 0:',1:‘1 11 D |14 12 25
o o 0o o |15 E L1..'1Ll_'T1 1 1 E (14 25 45
k p-1 New adjacency matrix 4 / Feature vector X
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INTUITION AND THE MATH'S BEHIND

New scale factor for columns

1/2 A [11732 42
0 B 10.4 51 |12
0 x c |12 13 21
0 ) I1.4 1225
0 E 14 25 45

Feature vector X

(A
The new scaler gives us the “weighted” average. " i
What are we doing here is to put more weights on 3 G"‘_ x-
the nodes that have low-degree and reduce the "
impact of high-degree nodes. . O
il
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INTUITION AND THE MATH'S BEHIND

One more minor note: When using two scalers (Ijii and Djj), we actually
normalize twice, one time for the row as before, and another time for the
column. It would make sense if we rebalance by modifying Dzz DJ ]

D;; D ;. In other words, instead of using D_l, we use D~ 1/2, So, we
further alter the formula to D—l/ 2 fi]:)‘l/ X , which is exactly used in

the paper.

| 1/2 0 0 0 © 1 0 0o |0 0

2 |0 |0 |0 |0 Rl 7 ° |
o (3 (0 (0 |O 0 1/3;0 0 0 0 1/3 o [0 |o
0o 0 3 0 0 0o 0 130 0 o (0o |y o |0

= - V3 |
0O 0 0 4 0 0o 0 o0 140 0 0 (12 0
o Ta | o 0o 0 |1
0 0 0 0 5 0 ‘0 0 ‘0 1/5 2

D p-1 p-1/2
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% INTUITION AND THE MATH'S BEHIND

k1) 0( AH(’“)W(’““))

A=D+I)z(I+A)(D+I)z

ooy i o
jEN: [INg]|N;| Graph G
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THE NUMBER OF LAYERS

L The number of layers is the farthest distance that node features can travel.
O Normally we don’t want to go too far. With 6-7 hops, we almost get the entire graph which
makes the aggregation less meaningful.
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HOW MANY LAYERS SHOULD WE STACK THE GCN?
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GNN VARIANTS

h, = UPDATE (h, ,AGREGATE ({h,,¥ v € N(w)}))

Self-loop
Graph Convolutional Networks, hk) — o [ Wk Z h, Sum of normalized
Kipf and Welling [2016] ‘ @i} V AN (w)]|INV( neighbor embeddings

Multi-Layer-Perceptron as

nr a ML
Aggregator, Zaheer et al. [2017] i il
Graph Attention Networks, ) 5 h.. exp (a' [Wh, & Wh,|)
Velickovic et al. [2017] ' e o - Y ety exp (aT [Wh, & Why])

BTk k
Gated Gréph Neural Networks, h(*) = GRU(h{¥~! m'\ ) ) REcirrert Ubdate ohthe state
Li et al. [2015] ()
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Source: Graph Neural Networks: A Review of Methods and Applications
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(GRAPH REPRESENTATION LLEARNING

WirLLiaM L. HAMILTON

MeGill University
2020

https:/www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
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MNARY MASKS FOR NODE-LEVEL PREDICTION
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%LDANARY MASKS FOR NODE-LEVEL PREDICTION

msak
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% GLOBAL GRAPH POOLING

(alele]. |
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EIEEN

20XX

GLOBAL GRAPH POOLING
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20XX

GLOBAL GRAPH POOLING

EEIENE
Embedidng of the whole graph
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% BATCHING WITH GRAPHS

In the image or language domain:
rescaling or padding

WHAT ABOUT Graphs?



BATCHING WITH GRAPHS
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%

Graph 1

I3

Graph 2

dqaﬂ

Graph n

st

n = Batch Size
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%

B

Graph 1

oy

Graph 2

2y

Graph n
|

n = Batch Size
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EEEER
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- EEEED

BATCHING WITH GRAPHS
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%

Graph 1 ElEE T 01010000...

g4 =S|

EEIENEN
Graph 2 EIEIEAEN

AR

Graph n

st

n = Batch Size Large Adjacency Matrix

BATCHING WITH GRAPHS




%

Graph 1

A9

Graph 2

a,qeﬂ

Graph n

o

n = Batch Size

20XX

EIEIEIEEE ¢

BATCHING WITH GRAPHS

Large Adjacency Matrix
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SCALING UP
GRAPH NEURAL NETWORKS TO
LARGE GRAPHS



https://class.vision/

GRAPHS IN MODERN APPLICATIONS

Recommender systems:
e Amazone

* YouTube [ Users: 1 Products / Videos:
* Pinterest @ 100M ~ 1B 10M~ 1B
* Instagram Bought/saw

amazon

Tasks:
* Recommend Items (Link Prediction)
* Classify users/Items (Node Classification
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GRAPHS IN MODERN APPLICATIONS

Social Networks
* Facebook

* Twitter

* Instagram

flolv

Tasks:
* Friend Recommend(Link Prediction)
» User property recommendation (Node-Level)

] Users:
300M ~ 3B

Friend/follow

Class.vision Graph Neural Network 105



GRAPHS IN MODERN APPLICATIONS

Academic Graph
Microsoft Academic Graph/

Tasks:
* Paper categorization
(node classification)
* Author collaboration recommendation
* Paper citation recommendation
(Link prediction)

Class.vision

Papers Authors
120M 120 M

writes

Institution

Author \_.Q

Graph Neural Network
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Knowledge Graphs (KGs)

Wikipedia
Freebase

Tasks:
* KG completion
* Reasoning

Class.vision

GRAPHS IN MODERN APPLICATIONS

] Entities:
80M ~ 90M

Geoffrey Hinton Canda

affiliated
wtih

born in

graduated from

University of 0

Toronto Paul Martin

Graduatec
from

is a

King College,

Person Cambridge

Graph Neural Network
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WHAT IS IN COMMON?!

dLarge-scale:
= #Nodes ranges from 10M to 10B
= ffedges ranges from 100M to 100B

JTaks:

= Node-level:
Use/Item/Paper classification
= Link-level:
Recommendation/Completion



PROBLEM!

Full-batch implementation is not feasible for a large graphs

Time inefficiency
* |n CPU takes too much time!

Memory Limitations

* GPU memory is extremely limited
* We cannot load entire dataset into memory
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SOLUTIONS!
SOME METHODS FOR SCALING UP GNNS

 Perform message-passing over small subgraphs in each mini-batch
¢ Only the subgraphs need to be loaded on a GPU at a time.
» Neighbour Sampling [Hamilton NeuriPs 2017]
» Cluster-GCN [Chiang et al. KDD 2019]

 Simplifies a GNN into feature-preprocessing operation
¢ Can be efficiently performed even on a CPU
» Simplified GCN [wu et al. IcML2019]
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GRAPHSAGE NEIGHBOR SAMPLING

GNNs generate node embeddings via neighbour aggregation.

Class.vision Graph Neural Network 111



GRAPHSAGE NEIGHBOR SAMPLING

Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and
features.

y Neighbor aggr
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GRAPHSAGE NEIGHBOR SAMPLING

Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and
features.

More generally, K-layer GNNs.generate embedding of a node using K-hop neighborhood structure and

features.

» Neighbor aggr
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GRAPHSAGE NEIGHBOR SAMPLING

Key insight: To compute embedding of a single node, all we need is the K-hop neighborhood
(which defines the computation graph).

O Given a set of M different nodes in a mini-batch, we can generate their embeddings using M
computational graphs. Can be computed on GPU!

Comp. graph Comp. graph Comp. graph
for 1-st node for 2-nd node for M-th node

Mini-batch

%
C

Class.vision Graph Neural Network
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STOCHASTIC TRAINING OF GNNS

We can now consider the following SGD strategy for training
K-layer GNNs: ki
ayer S: neighborhood
» Randomly sample M (<< N) nodes.
» For each sampled node v:
* Get k-hop neighbourhood, and construct the
computation graph.
* Use the above to generate v's embedding. Computational

» Compute the loss [, (0) averaged over the M nodes. graph
» Perform SGD: 8 « 0 — Vi ,;,(0)

Graph Neural Network 115



ISSUE STOCHASTIC TRAINING

» For each node, we need to get the entire K-hop neighborhood and pass it
through the computation graph.

» We need to aggregate lot of information just to compute one node
embedding.

» Computationally expensive.

Class.vision Graph Neural Network
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ISSUE STOCHASTIC TRAINING

More details:

» Computation graph becomes exponentially large with respect to the layer
size K.

» Computation graph explodes when it hits a hub node (high-degree node).

Q
&
®
—
Exponential Growth

Graph Neural Network
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NEIGHBOR SAMPLING

Key idea: construct the computational graph by (randomly) sampling at most H neighbours
at each hop.

O Example:

Sample 2,3 | Drop 1

Sample the neighborhood
from the root to leaves

Class.vision Graph Neural Network 118



NEIGHBOR SAMPLING

Key idea: construct the computational graph by (randomly) sampling at most H neighbours
at each hop.

O Example:

Sample 2,3 | Drop 1

Sample 0,8 | Drop 7
Sample 8,9 | Drop O

Sample the neighborhood
from the root to leaves
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NEIGHBOR SAMPLING

Key idea: construct the computational graph by (randomly) sampling at most H neighbours
at each hop.

O Example:

Sample 2,3 | Drop 1

Sample the neighborhood
from the root to leaves

Sample 0,8 | Drop 7
Sample 8,9 | Drop O

s K-layer GNN will at most involve 1‘[’,§=1 H, leaf nodes in computation graph.
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REMARKS ON NEIGHBOR SAMPLING

JRemark 1: Trade-off in sampling number H
**Smaller H leads to more efficient neighbour aggregation, but results in
more unstable training due to the larger variance in neighbour aggregation.

JRemark 2: Computational time
¢ Even with neighbour sampling, the size of the computational graph is still
exponential with respect to number of GNN layers K.
¢ Increasing one GNN layer would make computation H times more
expensive.
[ Remark 3: How to sample the nodes
¢ Random sampling: fast but many times not optimal!
¢ Random walk with restart



ISSUE WITH NEIGHBOUR SAMPLING

J Issue with neighbour sampling:
» The size of computational graph becomes exponentially large w.r.t. the #GNN

lavers.
» Computation is redundant, especially when nodes in a mini-batch share many
neighbours.
Input graph Computational
5 (B graph
9 @ @&

Same comp. graph

(except for sampling) Same comp. graph

(except for sampling)

Class.vision Graph Neural Network 122



N

#& / torch_geometric.nn / conv.SAGEConv

conv.SAGEConv -

class SAGEConv ( in_channels: Union|int, Tuple[int, int]], out_channels: int, aggr:

Optional[Union[str, List[str], Aggregation]] = "mean’, normalize: bool = False,

root_weight: bool = True, project: bool = False, bias: bool = True, **kwargs )
[source]

Bases: MessagePassing

The GraphSAGE operator from the “Inductive Representation Learning on
Large Graphs” paper

x; = Wix; + Wy - mean ;c v/ ;)X ;

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geom
etric.nn.conv.SAGEConv.html#torch_geometric.nn.conv.SAG

EConv

23
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Redundancy-Free Computation for
Graph Neural Networks
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ABSTRACT

Graph Neural Networks (GNNs) are based on repeated aggregations
of information from nodes’ neighbors in a graph. However, because
nodes share many neighbors, a naive implementation leads to re-
peated and inefficient aggregations and represents significant com-
putational overhead. Here we propose Hierarchically Aggregated
computation Graphs (HAGs), a new GNN representation technique
that explicitly avoids redundancy by managing intermediate aggre-
gation results hierarchically and eliminates repeated computations
and unnecessary data transfers in GNN training and inference.
HAGs perform the same computations and give the same mod-
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1 INTRODUCTION

Graph Neural Network models (GNNs) generalize deep represen-
tation learning to graph data [3, 9, 23] and have achieved state-of-
the-art performance across a number of graph-based tasks, such
as node classification, link prediction, and graph classification and
recommender systems [8, 14, 24, 27].

GNN s are based on a recursive neighborhood aggregation scheme,
where within a single layer of a GNN each node aggregates its
neighbors’ activations and uses the aggregated value to update its
own activation [23]. Such updated activations are then recursively

propagated multiple times (multiple layers). In the end, every node
in a CNINT ~allante infarmatinn fram athar nadac that ara in ite -

One approach to solve the redundancy problem!
https://dl.acm.org/doi/pdf/10.1145/3394486.3403142
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CLUSTER-GCN: REVIEW FULL-BATCH GNN

O In full-batch GNN implementation, all the node embeddings are updated together
using embeddings of the previous layer

Update forallv eV Message
h'Y) = COMBINE h(‘"”,AG(;R( Rl )
v ( v { " }uEN(v)

O In each layer, only 2*#(edges) messages need to be
computed.

O For K-layer GNN, only 2K*#(edges) messages need
to be computed.

1 GNN's entire computation is only linear in #(edges) \X
and #(GNN layers). Fast!

Meswng
/

.

Y4
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CLUSTER-GCN: INSIGHT FROM FULL-BATCH GNN

Layer-wise update
s

N
N/

0 The layer-wise node embedding update allows the re-use of embeddings
from the previous layer.

sampling.
% Of course, the layer-wise update is not feasible for a large graph due
to limited GPU memory.

O This significantly reduces the computational redundancy of neighbour \\
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CLUSTER-GCN: SUB-GRAPH SAMPLING

v Key idea: We can sample a small subgraph of the large graph and then perform the efficient
layer-wise node embeddings update over the subgraph.

Large graph Sampled subgraph Layer-wise
(small enough to node embeddings
be put on a GPU) update on the GPU

S
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CLUSTER-GCN: SUB-GRAPH SAMPLING

Key question: What subgraphs are good for training GNNs?

» Recall: GNN performs node embedding by passing messages via the edges.
» Subgraphs should retain edge connectivity structure of the original
graph as much as possible.
= This way, the GNN over the subgraph generates embeddings closer to
the GNN over the original graph.



CLUSTER-GCN: SUB-GRAPH SAMPLING

Which subgraph is good for training GNN?

Original graph Subgraphs (both 4-node induced subgraph)
Left Right
k@ vs. © WVl
O

» Left subgraph:

retains the essential community structure among the 4 nodes - Good \/
» Right subgraph:

drops many connectivity patterns, even leading to isolated nodes > Bad X

Class.vision Graph Neural Network
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CLUSTER-GCN: EXPLOITING COMMUNITY STRUCTURE

Real-world graph exhibits community structure
» A large graph can be decomposed into many small communities.

Key insight [chiang et al. KDD 2019]:

J Sample a community as a subgraph.

 Each subgraph retains essential local connectivity pattern of the original
graph.

Class.vision Graph Neural Network
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CLUSTER-GCN: OVERVIEW

Cluster-GCN consists of two steps: !t isa Vanilla cluster-GCN

1. Pre-processing:
Given a large graph, partition it into groups of nodes (i.e., subgraphs).

2. Mini-batch training:
Sample one node group at a time. Apply GNN's message passing over the
induced subgraph.

R Mini-batch training
Input large graph Partltlonmg Message-passing
over induced subgraph

m ” to compute the loss
I

_, AT~ <Z_.7 Sample
’ \
!

I
7

p —
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CLUSTER-GCN: ISSUES(1)

W The induced subgraph removes between-group links.
JAs a result, messages from other groups will be lost during

message passing, which could hurt the GNN's performance.

med subgraph
= ' 4 ~\

I’ \\ / \

i i { i

| X/ TSo
\ ,I \\ P

So e i

Between- \

group links % "
Lost messages

are removed

ass.vision Graph Neural Network
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CLUSTER-GCN: ISSUES(2)

JGraph community detection algorithm puts similar nodes together in the
same group.

JSampled node group tends to only cover the small-concentrated portion of
the entire data.

Sampled
node

group

Class.vision Graph Neural Network
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ADVANCED CLUSTER-GCN: ISSUES(3)

Sampled nodes are not diverse enough to be represent the graph structure:

L As a result, the gradient averaged over the sampled nodes, ITlclz”EVC Vi,(0),

becomes unreliable.
" Fluctuates a lot from a node group to another.
" |n other words, the gradient has high variance.
dLeads to slow convergence of SGD



ADVANCED CLUSTER-GCN

v’ Solution: Aggregate multiple node groups per mini-batch.

d Partition the graph into relatively-small groups of nodes.
 For each mini-batch:
1. Sample and aggregate multiple node groups.
2. Construct the induced subgraph of the aggregated node group.
3. The rest is the same as vanilla Cluster-GCN (compute node
embeddings and the loss, update parameters)



ADVANCED CLUSTER-GCN

Why does the solution work?

J Sampling multiple node groups
= Makes the sampled nodes more representative of the entire nodes.
= |eads to less variance in gradient estimation.

R,

 The induced subgraph over aggregated node groups
" |ncludes between-group edges
= Message can flow across groups.
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GRAPHSAGE VS CLUSTER-GCN

 Cluster-GCN is more computationally efficient than neighbour
sampling, especially when #(GNN layers) is large.

1 But Cluster-GCN leads to systematically biased gradient estimates
(due to missing cross-community edges)



SIMPLIFYING GNNS

d We start from Graph Convolutional Network (GCN) [Kipf & Welling ICLR 2017].
d We simplify GCN by removing the non-linear activation from the GCN
[Wu et all. ICML 2019].
" Wu et al. demonstrated that the performance on benchmark is not
much lower by the simplification.
 Simplified GCN turns out to be extremely scalable by the model design.



SIMPLIFYING GNNS: RECALL MEAN-POOL IN GCN

d Given: Graph ¢ = (V, E) with input node features X,, for v € V, where E
includes the self-loop:
= (v,v)€EEforallvel. @>
1 Set input node embeddings: hf,") =X, forveVlV

dForke{0,...,K— 1}:
=" Forall v € V, aggregate neighbouring information as

A = ReLl (Wl Sty A29)

Trainable weight matrices
(i.e., what we learn)

d Final node embedding: Z,, = hl(,k)

ey ZueNe P

Mean-pooling
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SIMPLIFYING GNNS: RECALL MATRIX FORMULATION OF GCN

GCN aggregations can be formulated as matrix vector product: Matrix of hidden
embeddings H®

Qtet H® = [0 a7

vl
 Let A be the adjacency matrix (w/ self-loop)

: k
dThen: 3 von pl9) = A, H® _'\
 Let D be diagonal matrix where ™S
Dy, = Deg(v) = IN(v) |
Q The inverse of D: D™ is also diagonal:
Dy = 1/|N(v)]
J Therefore,

1 (I1+1) _ p-1 )
T Z p(0| === H = D "AH

ass.vision Graph Neural Network 140

Uu€N (v)




SIMPLIFYING GNNS: RECALL MATRIX FORMULATION OF GCN

GCN's neighbour aggregation:
(k+1) 1 (k)
hv _ ReLU (Wk IN(V)| ZuEN(v) h'u )
In matrix form:
H*+D = ReLU(AH®W})

where A = D714
Note: The original GCN uses re-normalized version: A = D~1/24 p~1/2

= Empirically, this version of A often gives better performance than
D714



% SIMPLIFYING GNNS

Simplify GCN by removing ReLU non-linearity: g S
PR 4 J gkt AH®OW;

The final node embedding matrix is given as

H® =4 HE-D wl |
— AAEC W)W

B ?(z( (ﬁ' H®© ,w;‘;) )W}—Z)W}—ln
4/_, /

=A% X W§ - w}

—1)1 Composition of linear
transformation is still linear!

= AKX X W™ whereW = Wg_q - W,

Class.vision Graph Neural Network



SIMPLIFYING GNNS

[ Removing RelLU significantly simplifies GCN!
HE = AKxwT

 Notice AXX does not contain any learnable parameters; hence,
it can be pre-computed.
= Efficiently computable as a sequence of sparse-matrix vector products:
= DoX « AX for K times.



SIMPLIFYING GNNS

Q Let X = AXX be pre-computed matrix.
Simplified GCN's final embedding is
HE = xXwT
4 It's just a linear transformation of pre-computed matrix!
J Back to the node embedding form:

~

K
KO = wix,
Pre-computed feature vector for node v

J Embedding of node v only depends on its own (pre-processed)
feature!
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SIMPLIFYING GNNS

 Once X is pre-computed, embeddings of M nodes can be generated in time
linear in M:
" Given M nodes {v4, V5, ... ,v,}, their embeddings are

K y
h1(71) =WX,,,
K ey
hf,z) =WX,,,



SIMPLIFYING GNNS

In summary, simplified GCN consists of two steps:
Pre-processing step:

)

Pre-compute X = AX X. Can be done on CPU.

1 Mini-batch training step:

o

For each mini-batch, randomly-sample M nodes
{vy, V9, ..., Uy}

= Compute their embeddings by

« bSO =wX, B0 =wX,,,.., h{ = wX

* Use the embeddings to make prediction and compute the loss

ass.vision

averaged over the M data points.
Perform SGD parameter update.

Graph Neural Network
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COMPARISON WITH OTHER MODELS

J Compared to neighbour sampling:
» Simplified GCN generates node embeddings much more
efficiently (no need to construct the giant computational
graph for each node).

(J Compared to Cluster-GCN:

» Mini-batch nodes of simplified GCN can be sampled
completely randomly from the entire nodes (no need to
sample from multiple groups as Cluster-GCN does)

» Leads to lower SGD variance during training.

 But the model is much less expressive.



COMPARISON WITH OTHER MODELS

Compared to the original GN models, simplified GCN's expressive
power is limited due to the lack of non-linearity in generating
node embeddings.



COMPARISON WITH OTHER MODELS

Compared to the original GN models, simplified GCN's expressive
power is limited due to the lack of non-linearity in generating
node embeddings.

Why the performance is good?
https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxlpghjhPgd
Qy7imNkDn&t=880
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\ealsl W e W

Powertul are Graph Neural Networks?" paper

2 ' e The modified einconv operator from the "Strategies for
"“ o Pre-training Graph Neural Networks" paper
“",l The ARMA graph convolutional operator from the "Graph
ARMAConv Neural Networks with Convolutional ARMA Filters"
., paper
latest = The simple graph convolutional operator from the
o "Simplifying Graph Convolutional Networks" paper
Search docs
el The simple spectral graph convolutional operator from

the "Simple Spectral Graph Convolution" paper

The approximate personalized propagation of neural
APPNP predictions layer from the "Predict then Propagate: Graph
Neural Networks meet Personalized PageRank" paper

Installation

The graph neural network operator from the

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

conv.SGConv

class SGConv ( in_channels: int, out_channels: int, K: int = 1, cached: bool =
False, add_self_loops: bool = True, bias: bool = True, ""kwargs ) [source]

Bases: MessagePassing

The simple graph convolutional operator from the “Simplifying Graph
Convolutional Networks” paper

X = (f)—1/2Af)—1/2)KX@,

where A = A + I denotes the adjacency matrix with inserted self-loops

A

and ﬁn = Z =0 A;;j its diagonal degree matrix. The adjacency matrix can

include other values than 1 representing edge weights via the optional
edge_weight tensor.

https://pytorch-

—

nn.conv.SGConv.html#torch geometric.nn.conv.SGConv

geometric.readthedocs.io/en/latest/generated/torch geometric.

=4

—



https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html#torch_geometric.nn.conv.SGConv

EXAMPLE

class Net(torch.nn.Module):
def _init_(self):
super().__init_ ()
self.convl = SGConv(dataset.num_ features, dataset.num _classes, K=2,

cached=True)

forward(self):

X, edge_index = data.x, data.edge_index

x = self.convl(x, edge index)

return F.log softmax(x, dim=1)

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py



https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py

SCALING UP GNNS VIA REMOTE BACKENDS

JUsing key-value and graph database:
» Documentation:
https://pytorch-geometric.readthedocs.io/en/latest/advanced/remote.html

» Example:
https://github.com/pyg-team/pytorch_geometric/tree/master/examples/kuzu/papers_100M

Distributed Storage Training Instance
[0.1,0.1,3.9,25, ..., 0.1]

1:10.1,0.3, 0.9, 4.2, ..., 0.3]
2:[0.2,1.7, 1.4, 24, ..., 0.6] [02.17,14,24, ... 06]
3:[0.1,0.1, 3.9, 25, ..., 0.1]

n:[0.4,0.5,0.2,1.2, ..., 0.1] NSt hee il

Sampled subgraph, joined with

Graph Store: nodes and edges. Feature store: node and edge tensors features; all that is necessary for
forward/backward.
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EDGE FEATURES
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WHY ARE EDGE FEATURES ARE IMPORTANT?

AT ) o —
e BRI

I O

Node feature

N O o

Node feature

Edge feature

Friends | Friendssince | Live together

yes 9 no

Class.vision Graph Neural Network

155



MHY ARE EDGE FEATURES ARE IMPORTANT?
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MHY ARE EDGE FEATURES ARE IMPORTANT?
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MHY ARE EDGE FEATURES ARE IMPORTANT?
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% THE GENERAL PROCESS IN GNNS

TRANSFORM

Cnom 8 @
@mm ‘@ @
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THE GENERAL PROCESS IN GNNS

TRANSFORM

@-u. ‘ @ AGGREGATE

@nnn w @

+ Normalize
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THE GENERAL PROCESS IN GNNS

TRANSFORM UPDATE
AGGREGATE

sum ()

+ Normalize
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USING EDGE WEIGHT

&
1
0
1
1
0

ooow»—a@
ooo—aoo@
8 - @
2
D
D
)

Node Features/embeddings

e
p+1) — (,( AH(’“)WU‘““Ll))

A =

AN

TRANSFORM

(D+I)"z(I+A)(D+I)"z .
4
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DIFFERENT EDGE TYPES

1 = Friends

3 = Colleagues
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DIFFERENT EDGE TYPES — RELATIONAL GCN

TRANSFORM UPDATE

@ﬂ ‘ | @ - AGGREGATE |
‘ @» SUM (@ @) g '.;:":

7 + Normalize

Relational GCN
Modelling Relational Data with Graph Convolutional Networks, Schlichtkrull et al.
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DIFFERENT EDGE TYPES — RELATIONAL GCN

TRANSFORM

a-n- . @ — AGGREGATE
| Friends |

+ Normalize

Friends - u
®: 5 TRANSFORM

00000

(]

~

@ oo 10 o0 ‘
\ &

OCE . E ‘

{

&)1

i ‘ (I+1) . 1 1)1 (1) 1) 1. ()
. & Al (Z > —Wh + W h; )

C:
WER cNT T
e6ees TRANSFORM

\\\\\\\

DD

CO”eag, Graph Neural Network

UPDATE
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The approximate personalized propagation of neural
APPNP predictions layer from the "Predict then Propagate: Graph
Neural Networks meet Personalized PageRank" paper

The graph neural network operator from the

MFConv "Convolutional Networks on Graphs for Learning
Molecular Fingerprints" paper
4 )
The relational graph convolutional operator from the
RGCNConv "Modeling Relational Data with Graph Convolutional
Networks" paper
g J
FastRGCNConv See RGCNConv .

The relational graph convolutional operator from the
CuGraphRGCNConv "Modeling Relational Data with Graph Convolutional
Networks" paper.

https:/pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

conv.RGCNConv - conv.FastRGCNConv -

closs FastRGCNConv [ in_channels: Unionlint, Tuplelint, int]}, out_channels: int,
num_relations: int, num_bases: Optionallint] = None, num_blocks: Optionallint] =
None, aggr: str = ‘mean ', root_weight: bool = True, is_sorted: bool = False,
bias: bool = True, “"kwargs ) [source]

class RGCNConv ( in_channels: Unionlint, Tuplelint, int]], out_channels: int,
num_relations: int, num_bases: Optionallint] = None, num_blocks: Optionallint] =
None, aggr: str = 'mean’, root_weight: bool = True, is_sorted: bool = False,
bias: bool = True, “"kwargs ) [source]

Bases: rechcony
Bases: MessagePassing

. . _ _ See RGCNConv .
The relational graph convolutional operator from the "Modeling Relational

Data with Graph Convolutional Networks" paper forward ( x: Union[Tensor, None, Tuple[Optional[Tensor], Tensor||, edge_index:
Union[Tensor, Sparselensor|, edge_type: Optional[Tensor] = None ) [source]
/
X rnul * Xi + Z Z YA (N1 @ * Xy
,./\f Runs the forward pass of the module.
reR jeN.(i)
PARAMETERS

where R denotes the set of relations, i.e. edge types. Edge type needs to o % (torch Tersor oF tuile, cotional) - The tnal rodé featins: Can ke

be a one-dimensional terch.long tensor which stores a relation identifier
€ {0,...,|R| — 1} for each edge.

either a [num_nodes, in_channels] node feature matrix, or an optional

one-dimensional node index tensor (in which case input features

https: torch- https: torch-

g i . .. [ [ lg l g i . . . . . . .
eometric reodthedocs lo/en/latest/generated/torch_geometric.nn.conv.RGCNCony.htm geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNCo
|#torch_geometric.nn.conv.RGCNConv .

nv.html#torch_geometric.nn.conv.FastRGCNConv

Example: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py
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https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py

DIFFERENT EDGE TYPES — GNN FILM

TRANSFORM URDATE

@n . @ _ AGGREGATE \
Gouoa S on o9

Al @\ SUM (@ @)
g ™ @Qmmm @

,e0ees

€ ¢+ e TRANSFORM

R . ¥ :

g REHD = ; o (v, o Wb + B{1)) ; 6,
soeas  TRANSFORM uboee

o S GNN-FiLM: Graph Neural Networks with Feature-wise

Q \\\\\\\

Linear Modulation

DD
o
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https://arxiv.org/abs/1906.12192
https://arxiv.org/abs/1906.12192

2C LIBRARY

= SlidesLive Kategorien v  Suche Q a

ICML > ICML 2020 > Posters > GNN-FILM: Graph Neural Networks with Feature-wise Linear Modulation

.. IC M L
International Confetence
On Moching Leaming

GNN-FiLM

Graph Neural Networks with Feature-wise Linear Modulation

GNN-FiLM: Graph Neural Networks
with Feature-wise Linear Modulation

Marc Brockschmidt

Marc Brockschmidt <mabrocks@microsoft.com>

=" Microsoft

GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation

~ Soll diese Prasentation fiir 1000 Jahre gespeichert werden?
Wie speichemn wir Prasentationen?

modulation?ref=recommended
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WLConv

WLConvContinuous

The Weisfeiler Lehman operator from the "A Reduction of
a Graph to a Canonical Form and an Algebra Arising
During this Reduction" paper, which iteratively refines
node colorings:

The Weisfeiler Lehman operator from the "Wasserstein
Weisfeiler-Lehman Graph Kernels" paper.

-

FiLMConv

\_

The FiLM graph convolutional operator from the "GNN-
FiLM: Graph Neural Networks with Feature-wise Linear

Modulation" paper

SuperGATConv

FAConv

The self-supervised graph attentional operator from the
"How to Find Your Friendly Neighborhood: Graph
Attention Design with Self-Supervision" paper

The Frequency Adaptive Graph Convolution operator
from the "Beyond Low-Frequency Information in Graph
Convolutional Networks" paper

https:/pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Class.vision
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

conv.FiLMConv.

class FiLMConv ( in_channels: Unionlint, Tuplelint, int]], out_channels: int,
num_relations: int = 1, nn: Optional[Callable] = None, act: Optional[Callable] =
ReLU(), aggr: str = "mean’, **kwargs ) [source]

Bases: MessagePassing

The FiLM graph convolutional operator from the “GNN-FiLM: Graph
Neural Networks with Feature-wise Linear Modulation” paper

X —L L 7rz®wrxj+ﬂrz)

reR jeN (i)

where B, ;,v¥ri = g(x;) with g being a single linear layer by default. Self-
loops are automatically added to the input graph and represented as its

geometric.readthedocs.io/en/latest/generated/torch_geome
tric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMC

https://pytorch-

own relation type.
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DIFFERENT EDGE TYPES- OTHER VARIANTS

GGNN: A" =GRU( A , W,-B + W,y -C + -D)
R-GCN: A’ = o Wes-A + W,-B + W, -C + - 1))
R-GAT: A" = U( (a.-‘i’)AQA -Wg-A + (a;‘\')B—-‘»A -W,-B + (a.»v)(,.'—'%,»\ -Wa-C + (a v)/n-+ 1 -W,-D )
R-GIN: A" = o MLPq5(A)+ MLP,(B)+ MLP;(C)+ MLP, (1))
GNN-MLP: A" = o MLP(A|A)+ MLP, (/>’||/1)+ MLPg(('||A)+ MLP,(D|A))
RGDCN: A" = o Wea-A+ Wia-B + Woa-C + Wia-D)
GNN-FILM: A" = 0(Bsa +Y5,40We- A +B81 4 +71,40Wi-B +83 4 + 724 OW2-C +8, 4 + 7,4 OW1-D )
” - ,- —,“ — —ON ~ ~
- D O k. B’
// I 2 I . \\
o @ @ @
,/" C’

https: //arxw orq/odf/1906 12192.pdf
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% MULTIDIMENSIONAL EDGE FEATURES
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% MULTIDIMENSIONAL EDGE FEATURES
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UPDATE




%MLJLTIDIIVIENSIONAL EDGE FEATURES: MP-GNN

mfﬂ'l: Z Mt(hfj,hfw,evw)
weN (v)

Ut(hfn mt+1)

(¥

t+1
o

MP-GNN

Neural Message Passing for Quantum Chemistry
Gilmer et al.



MP-GNN

TRANSFORM

_jeee]

]\ —~ % 5 . — .
B et B & e
8 - s
/. N J
i

> My(h, B D

weN (v)
t+1 __ t t+1
.’ hv - Ut(hv?mv )
/
‘ / MP-GNN
‘,' Neural Message Passing for Quantum Chemistry
Gilmer et al.
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MP-GNN

TRANSFORM UPDATE

AGGREGATE

_ [wlee G -4
::‘i J -l 4 + li i
r Normalize eu . /
&

@ 1
i mytt = D (Ma(ha, B, )
/ weN (v)

/

/ h'f)+l - Ut(hva m, )

MP-GNN

Neural Message Passing for Quantum Chemistry
Gilmer et al.
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MULTIDIMENSIONAL EDGE FEATURES: PNACONYV

TRANSFORM UPDATE

AGGREGATE

sun @@ %

xHV =v (x9, @ M (xR x)

(4,))€E
PNAConv
Principal Neighbourhood Aggregation for Graph Nets
Corso et al.

Graph Neural Network

+ Normalize y /
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MULTIDIMENSIONAL EDGE FEATURES
OTHER EXAMPLES

Graph Convolutional Networks for Graphs with
Multi-Dimenssonally Weighted Edges
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USING EDGE FEATURES IN PYTORCH GEOMETRIC

Installation

& Read the Docs

Class.vision

# torch_geometric.nn

torch_geometric.nn

Contents

o Convolutional Layers

o Aggregation Operators
o Normalization Layers
* Pooling Layers

e Unpooling Layers

e Models

o KGE Models

e Encodings

e Functignal

Graph Neural Network

@ PyTorch

geometric

180


https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

USING EDGE FEATURES IN PYTORCH GEOMETRIC

@ PyTorch

geometric

» edge_weight > GNN Layer can use weight values on the adjacency matrix
» edge_type =2 GNN Layer can use different edge types / relations
» edge_attr 2 GNN Layer can use edge features

forward ( x: Union[Tensor, None, Tuple[Optional[Tensor], Tensor]], edge index:
Union[Tensor, SparseTensor],|edge_type:|Optional[Tensor] =None ) [source]

00

Class.vision Graph Neural Network
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LINK PREDICTION
AND GRAPH AUTOENCODER



https://class.vision/

WHAT IS A RECOMMENDER SYSTEM?

i
>
/
A y; A V4 A
7/

9/ 2R

Content-based filtering Collaborative filtering
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% BIPARTITE GRAPH
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BIPARTITE GRAPH
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GRAPH CONVOLUTIONAL MATRIX COMPLETION

\
Items
T €ER
511(01(0
" 0/3(0(0
S 0|0/5]0 GAE
=
00|04
0|]0(2(0
Rating matrix M \, J/ Graph
Bipartite graph Auto-Encoder Link prediction
Learnable transformation
users T¥ . items
u; Qrv;
~ €%
SoftMax M L L
Which edge type p( 1) T T) T TQ _
eWi %sVj
SER

Graph Convolutional Matrix Completion
Rianne van den Berg, Thomas N. Kipf, Max Welling 2017
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Graph Convolutional Matrix Completion
Rianne van den Berg, Thomas N. Kipf, Max Welling 2017

Class.vision
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Graph Neural Network
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GRAPH AUTOENCODERS (GAE)

Embedding

Encoder Latent space Decoder

/ _

Z=X

A graph convolutional Neural Network
produces a low dimensional embedding representation

X = GCN(4,X) = ReLU(AXW,)
With A = D~1/2 A D~1/2
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% GRAPH AUTOENCODERS (GAE)

(A
B
Xb

Class.vision

I

~

c
| Xc

\

Encoder

L

Inner product

Node embedding in a
latent space with two
dimension.

A — [1,4]
B — [4,5]
C —1[6,2]

Between latent variable Z

Graph Neural Network

Reconstruct
The input graph

Decoder
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WHY INNER PRODUCT?

2
- 1 | 24|81 ] 0.3 1 2 3 4
2 | 07 | 06| 0.2 24 | 07| 03| 21
? 3 |03]|92]12 81 | 06 | 9.2 | 1.8
4 4 | 21| 18] 0.8 03] 02| 12| 0.8
YA ZT

A =0(2Z"), with Z=GCN(X,A)

Variational Graph Auto-Encoders, 2016
https://arxiv.org/abs/1611.07308
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WHY INNER PRODUCT?

2
- 1 | 24|81 ] 0.3 1 2 3 4
2 | 07 | 06| 0.2 24 | 07| 03| 21

? 3 |03]092] 12 81 | 06 | 9.2 | 1.8

4 4 | 21| 18] 0.8 03] 02| 12| 0.8
/ 4x3 ZT 3 X 4

A =0(2Z"), with Z=GCN(X,A)

Variational Graph Auto-Encoders, 2016
https://arxiv.org/abs/1611.07308
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WHY INNER PRODUCT?

s [ 1|23
/."
1 1 |24 |81]|03 ‘ 12 ]2|°>
2 |07 |06 |02 2 | 2| 2|2
3
3 |03|92]12 cI I A
4 4 | 21|18 |08 412 12|72
/ 4X%3 Adjacency
4% 4

A =0(2ZZ"), with Z=GCN(X,A)

Variational Graph Auto-Encoders, 2016
https://arxiv.org/abs/1611.07308
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HETEROGENEOUS &
KNOWLEDGE GRAPH
EMBEDDING
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% HETEROGENEOUS GRAPHS

d A heterogeneous graph is defined as

G = (V,E,RT)

" Nodes with node types v; € V

" Edges with relation types (v, T, vj) EE
* Node type T (v;)

" Relationtyper €R
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% SETTING UP LINK PREDICTION

The original graph



SETTING UP LINK PREDICTION

The original graph

o

(1) At training time:

Use training message
edges to predict training
supervision edges
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SETTING UP LINK PREDICTION

The original graph

o

(1) At training time: (2) At validation time:
Use training message Use training message
edges to predict training edges & training
supervision edges supervision edges to

predict validation edges
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SETTING UP LINK PREDICTION

The original graph

o

(1) At training time: (2) At validation time: (3) At test time:

Use training message Use training message Use training message
edges to predict training edges & training edges & training
supervision edges supervision edges to supervision edges &

predict validation edges validation edges to
predict test edges
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SPATIO-TEMPORAL
GRAPH NEURAL NETWORKS
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Source: DCRNN paper

Traffic Forecasting




Source: DCRNN paper

Source: Transfer GNN for Pandemic forecasting

Y

Traffic Forecasting

Epidemics (Covid Predictions)



Source: DCRNN paper / K Source: Transfer GNN for Pandemic forecasting /

Traffic Forecasting Epidemics (Covid Predictions)

Source: mediapipe /

Motion Classification



IEEE TRANSACTIONS ON IMAGE PROCESSING,

Multiscale Spatio-Temporal Graph Neural Networks
for 3D Skeleton-Based Motion Prediction

Maosen Li, Student Member, IEEE, Siheng Chen, Member, IEEE, Yangheng Zhao, Ya Zhang, Member, IEEE,
Yanfeng Wang, and Qi Tian, Fellow, IEEE

Abstract—We propose a multiscale spatio-temporal graph
neural network (MST-GNN) to predict the future 3D skeleton-
based human poses in an action-category-agnostic manner. The
core of MST-GNN is a multiscale spatio-temporal graph that
explicitly models the relations in motions at various spatial
and temporal scales. Different from many previous hierarchical
structures, our multiscale spatio-temporal graph is built in a data-
adaptive fashion, which captures nonphysical, yet motion-based
relations. The key module of MST-GNN is a multiscale spatio-
temporal graph computational unit (MST-GCU) based on the
trainable graph structure. MST-GCU embeds underlying features
at individual scales and then fuses features across scales to obtain
a comprehensive representation. The overall architecture of MST-
GNN follows an encoder-decoder framework, where the encoder




Source: DCRNN paper

Traffic Forecasting

Source: mediapipe

\ Source: Transfer GNN for Pandemic forecasting /

Epidemics (Covid Predictions)

Motion Classification

K Source: GCLSTM, Simeunovic et al. /

Power Systems Forecasting




TIME VARYING GRAPH

GV,E Xy, Xg)
Static structure, static features

Static structure, time-varying features L g,

eeeeeeee

Spatio-temporal graph

Time-varying structure, time-varying features

Dynamic graph
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HOW DO WE DEAL WITH GRAPHS WITH STATIC STRUCTURE
AND TIME-VARYING FEATURES?
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TRAFFIC FORECASTING

L
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TRAFFIC FORECASTING
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TRAFFIC FORECASTING
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% TRAFFIC FORECASTING

60 120

@ 200
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% TIME SERIES

60 120




60 120
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XN1»t1 60 120

XN1»tz 65 130

XN1»t3 50 100

60
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TIME SERIES

Graph Neural Network

Speed

Time —

215



XN1»t1 60 120

XN1»tz 65 130

XN1»t3 50 100
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TIME SERIES

Graph Neural Network

Speed

# cars / Unit
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THERE ARE SEVERAL EXISTING MODELS FOR TIME SERIES
FORECASTING

e Basic models
* ARMA-type models (ARMA, VARIMAX, etc.)

* Basically multi-linear regression over time
* Requires “stationary” generating process

Time >
e Neural network-based models

e Recurrent neural networks (LSTM, GRU) |
e Temporal convolutions (see 2016 paper) JT
 Temporal attention (see 2019 paper) N




% SPATIAL

60 120

10 55



STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT,
HERE IS AN EXAMPLE IN PSEUDOCODE

STGNN():
“""Processes a sequence of graph data to produce a spatio-temporal embedding
to be used for regression, classification, clustering, etc.

__init_ (self):

.spatial block = GNN()

.temporal block = TemporalConv()
.fc = torch.nn.Linear(F_in, F out)
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STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT,
HERE IS AN EXAMPLE IN PSEUDOCODE

forward(self, X, A):

Args:

X (array): matrix of node features, X.shape = (B, N, F, T)

A (array): adjacency matrix (potentially sparse), defines graph structure,
if non-sparse A.shape = (N, N)

where
batch size for batch training
number of nodes in the graph
number of features per node
number of previous timesteps we consider

tmp .temporal block(X)
tmp .spatial block(tmp, A)
tmp .temporal block(tmp)
tmp .fc(tmp)

return tmp

Class.vision Graph Neural Network 220



PyTorch Geometric Temporal: Spatiotemporal Signal Processing
with Neural Machine Learning Models

Benedek Rozemberczki® Paul Scherer Yixuan He -
AstraZeneca University of Cambridge University of Oxford -8_
United Kingdom United Kingdom United Kingdom %
benedek.rozemberczki@astrazeneca.com pms69@cam.ac.uk yixuan.he@stats.ox.ac.uk t
o
George Panagopoulos Alexander Riedel Maria Astefanoaei S
Ecole Polytechnique Ernst-Abbe University for Applied IT University of Copenhagen o
= France Sciences Denmark =
C_} george.panagopoulos@polytechnique.edu Germany msia@itu.dk _8_
~ alexander.riedel@eah-jena.de o
O
- Oliver Kiss Ferenc Beres Guzman Lopez ;
,__f‘ Central European University ELKH SZTAKI Tryolabs 5
— Hungary Hungary Uruguay 3
e kiss_oliver@phd.ceu.edu beres@sztaki.hu guzman@tryolabs.com §
pr
r— Nicolas Collignon Rik Sarkar =
\/ Pedal Me The University of Edinburgh
- United Kingdom United Kingdom
7s nicolas@pedalme.co.uk rsarkar@inf.ed.ac.uk
-
";)"" ABSTRACT ACM Reference Format:
N We present PyTorch Geometric Temporal a deep learning frame- %“"dek Rowemibercats), Tanlhcueres, Y Moy Oeorge Pim‘dgq‘poul?s,
S s X 3 : : . exander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman
v work combining state-of-the-art macline leatning algorlthms o Lopez. Nicolas Collicnon. and Rik Sarkar. 2021, PyvTorch Geometric Tempo



https://arxiv.org/pdf/2104.07788.pdf

Model Temporal GNN Proximity Multi

Layer Layer Order Type
DCRNN [32] GRU DiffConv Higher False
GConvGRU [51] GRU Chebyshev Lower False
GConvLSTM [51] LSTM Chebyshev Lower False
GC-LSTM [10] LSTM Chebyshev Lower True
DyGrAE [54, 55] LSTM GGCN Higher False
LRGCN [31] LSTM RGCN Lower False
EGCN-H [39] GRU GCN Lower False
EGCN-O [39] LSTM GCN Lower False
T-GCN [65] GRU GCN Lower False
A3T-GCN [68] GRU GCN Lower False
AGCRN [4] GRU Chebyshev Higher False
MPNN LSTM [38] LSTM GCN Lower False
STGCN [63] Attention || Chebyshev Higher False
ASTGCN [22] Attention || Chebyshev Higher False
MSTGCN [22] Attention || Chebyshev Higher False
GMAN [66] Attention Custom Lower False
MTGNN [61] Attention Custom Higher False
AAGCN [52] Attention Custom Higher False
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Model Temporal GNN Proximity Multi

Layer Layer Order Type
DCRNN [32] GRU DiffConv Higher False
GConvGRU [51] GRU Chebyshev Lower False
GConvLSTM [51] LSTM Chebyshev Lower False
GC-LSTM [10] LSTM Chebyshev Lower True
DyGrAE [54, 55] LSTM GGCN Higher False
LRGCN [31] LSTM RGCN Lower False
EGCN-H [39] GRU GCN Lower False
EGCN-O [39] LSTM GCN Lower False
T-GCN [65] GRU GCN Lower False
A3T-GCN [68] GRU GCN Lower False
AGCRN [4] GRU Chebyshev Higher False
MPNN LSTM [38] LSTM GCN Lower False
STGCN [63] Attention  Chebyshev Higher False
ASTGCN [22] Attention  Chebyshev Higher False
MSTGCN [22] Attention = Chebyshev Higher False
GMAN [66] Attention Custom Lower False
MTGNN [61] Attention Custom Higher False
AAGCN [52] Attention Custom Higher False

Graph Neural Network
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T-GCN:A TEMPORAL GRAPH CONVOLUTIONAL NETWORK

FOR TRAFFIC PREDICTION

T-GCN: A Temporal Graph ConvolutionalNetwork for Traffic Prediction, Zhao et all

Class.vision

Graph Neural Network

Model Temporal GNN Proximity Multi

Layer Layer Order Type
DCRNN [32] GRU DiffConv Higher False
GConvGRU [51] GRU Chebyshev Lower False
GConvLSTM [51] LSTM Chebyshev Lower False
GC-LSTM [10] LSTM Chebyshev Lower True
DyGrAE [54, 55] LSTM GGCN Higher False
LRGCN [31] LSTM RGCN Lower False
EGCN-H [39] GRU GCN Lower False
EGCN-O [39] LSTM GCN Lower False
T-GCN [65] GRU GCN Lower False
A3T-GCN [68] GRU GCN Lower False
AGCRN [4] GRU Chebyshev Higher False
MPNN LSTM [38] LSTM GCN Lower False
STGCN [63] Attention  Chebyshev Higher False
ASTGCN [22] Attention ~ Chebyshev Higher False
MSTGCN [22] Attention  Chebyshev Higher False
GMAN [66] Attention Custom Lower False
MTGNN [61] Attention Custom Higher False
AAGCN [52] Attention Custom Higher False
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https://arxiv.org/pdf/1811.05320

PYTORCH GEOMETRIC TEMPORAL

v StaticGraphTemporalSignal Spatiotemporal Signal Splitting

v" DynamicGraphTemporalSignal
v' DynamicGraphStaticSignal

Geometric Temporal

g PyTorch
J

Temporal GNN Layers Datasets

https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html

Class.vision Graph Neural Network
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SOURCES

CS224W: Machine Learning with Graphs

https://web.stanford.edu/class/cs224w/

Intro to graph neural networks (ML Tech Talks)

https:/www.youtube.com/watch?v=80wQBFAHW7E&t=253s

Introduction to graph neural networks (made easy!)

https:/www.youtube.com/watch?v=cka4Fa4TTI4

How to use edge features in Graph Neural Networks (and PyTorch Geometric)

https:/www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7087&index=5
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https://www.topbots.com/graph-convolutional-networks/
https://www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7O8Z&index=5
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