

GRAPH NEURAL NETWORK

Alireza Akhavanpour http://Class.vision

AGENDA

An Introduction to Graphs and their Applications in Machine Learning

Graph Neural Networks and Implementation in TensorFlow/Keras

Implementing Graph Neural Networks in PyG

Training and Using Graph Neural Networks at Scale

Edge Features

Link Prediction and Implementing Recommender Systems

Spatio-Temporal Graph Neural Networks

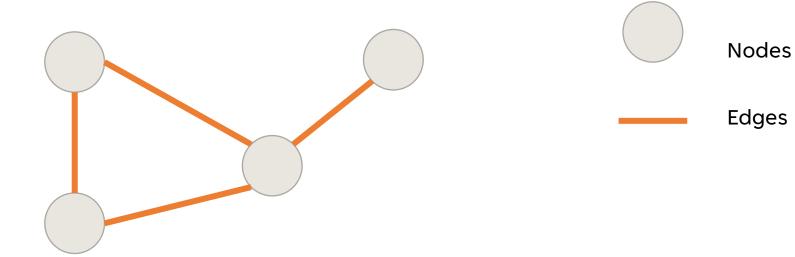
Conclusion

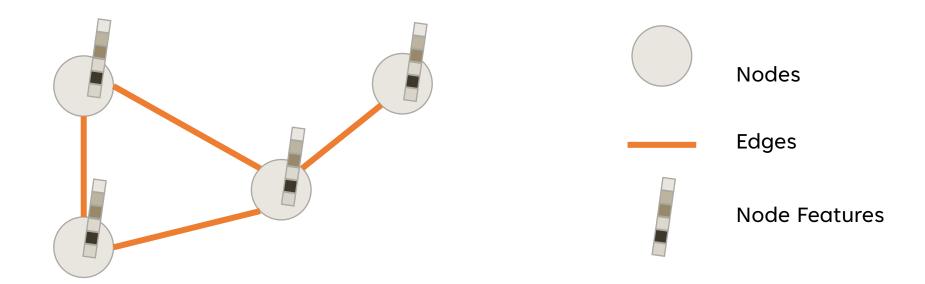
GRAPH TERMINOLOGY

What is Node, Edge, and ...

How we can store graphs?

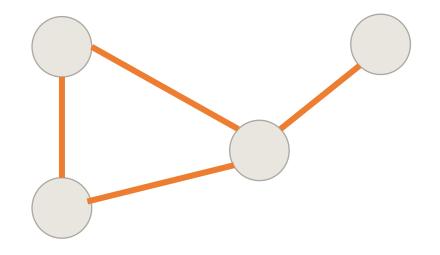
•••



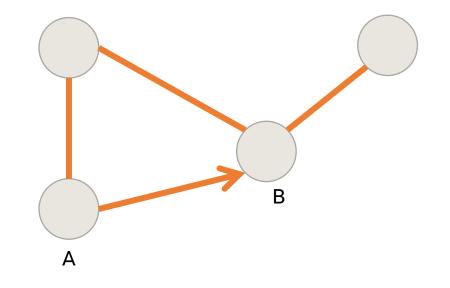


TYPES OF GRAPH

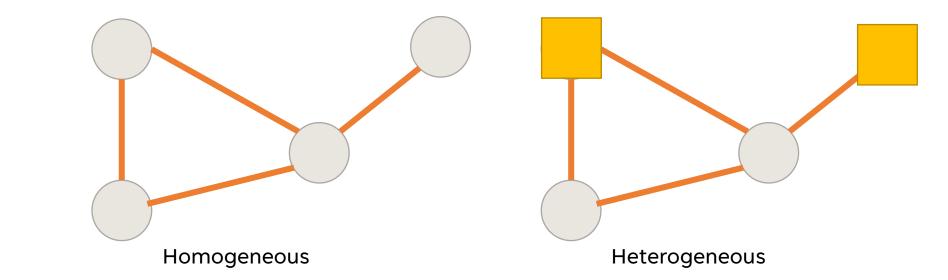
- Undirected graph
- Directed graph



• Directed graph 🔶

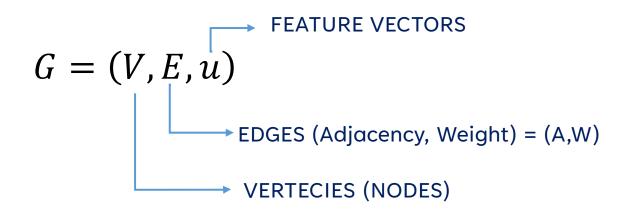


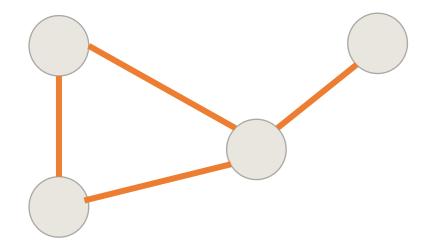
TYPES OF GRAPH

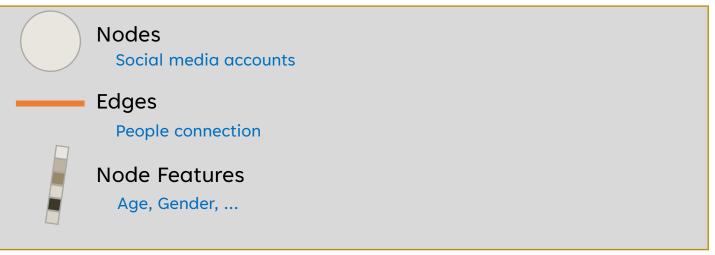


- Homogeneous graph
- Heterogeneous graph

GRAPH EXAMPLE



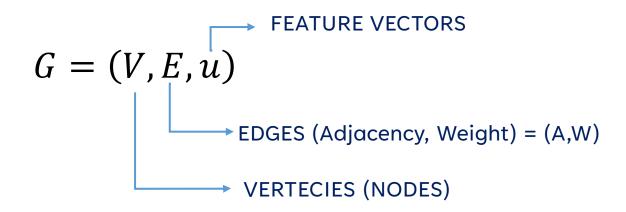


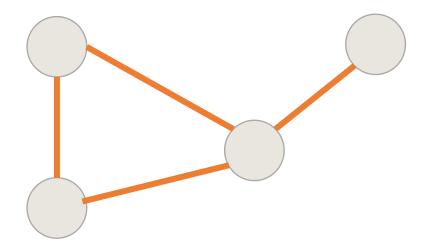


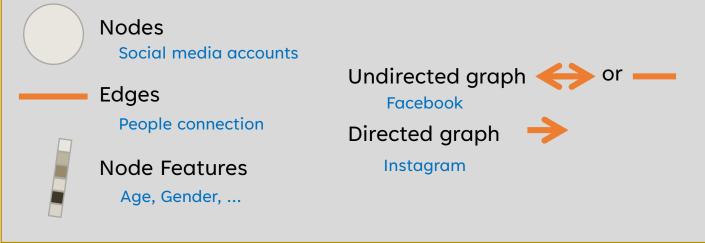
https://Class.vision

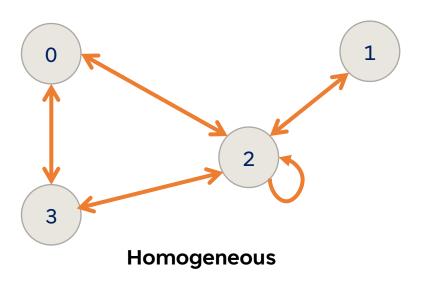
Graph Neural Network

GRAPH EXAMPLE









STORING GRAPH

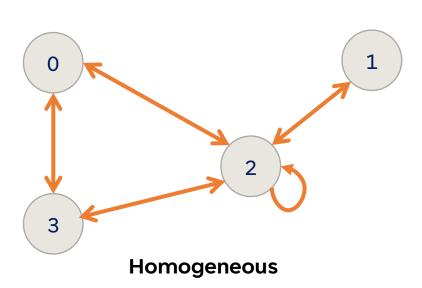
Source Node, Target Node

(0, 1)

(3,0)

(3

(0,2) (0,3) (1,0) (2,0) (2,2) (2,3)

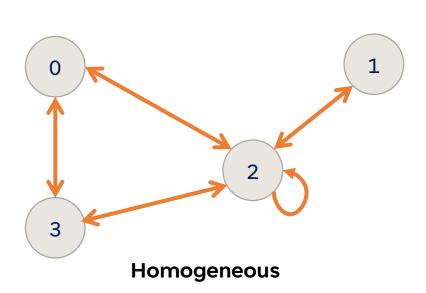


STORING GRAPH

Adjacency Matrix:

	0	1	2	3
0	0	1	1	1
1	1	0	0	0
2	1	0	1	1
3	1	0	0	1

 $V \times V$

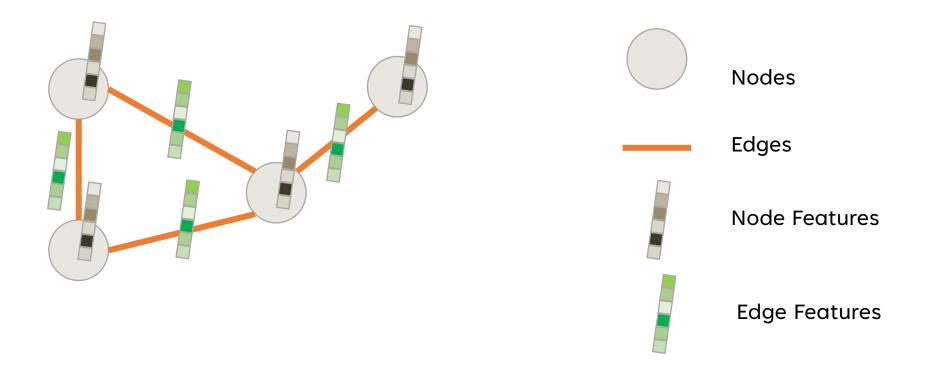


STORING GRAPH

Adjacency Matrix:

	0	1	2	3
0	0	2	1.5	4
1	5	0	0	0
2	1.5	0	1	1
3	12	0	0	1

We can use **weight** instead of Boolean! To show how strong the connection is!



YOU CAN MODEL COMPLEX SYSTEMS, DEPENDING ON HOW YOU CHOOSE TO DEFINE THE GRAPH

Edge type:

weighted vs binary

Edge directionality:

undirected vs directed

Generation Features:

None, node-based, edge-based

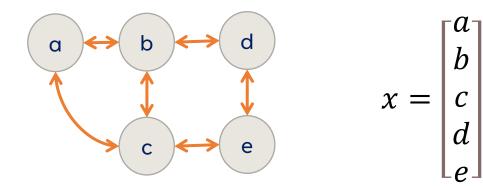
Temporal Aspects:

Features, topology

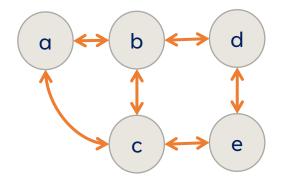
Others:

Multi-graphs, hypergraphs, complex networks

GRAPH DEGREE

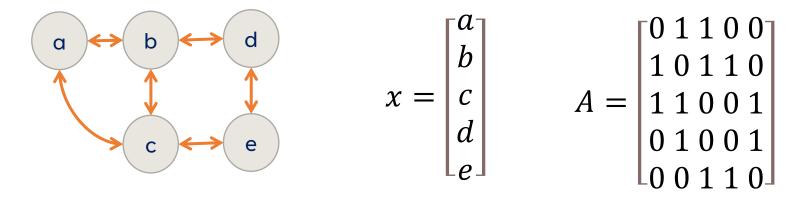


GRAPH DEGREE



$$x = \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} \qquad A = \begin{bmatrix} 0 \ 1 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 0 \ 0 \end{bmatrix}$$

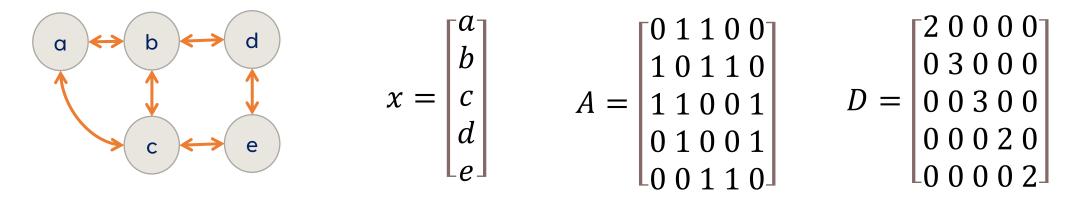
GRAPH DEGREE



Degree matrix (D) is a **<u>diagonal matrix</u>** defining number of connection per node

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
 Degree matrix shows influence of each node on the whole graph

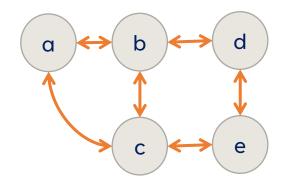
LAPLACIAN OF GRAPH



Laplacian matrix (L) is a L = D - A OR L = D - W in weighted matrix

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 & 1 \\ -1 & 3 & -1 & -1 & 0 \\ -1 & -1 & 3 & 0 & -1 \\ 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

NORMALIZED GRAPH

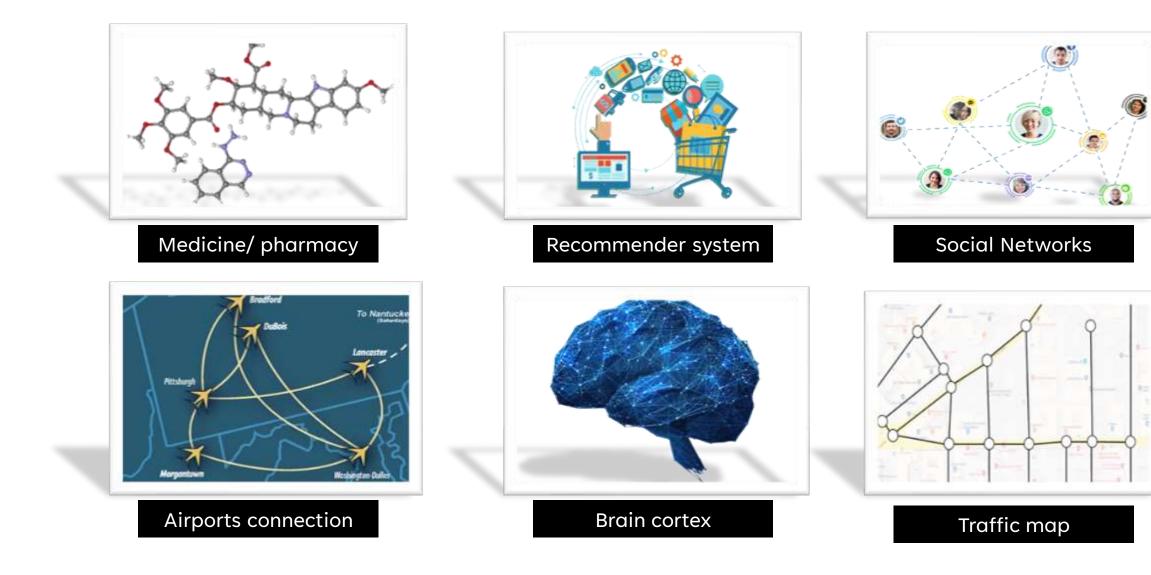


We can decide to show the relation between of the nodes, with any of the following matrices:

 $A, L, \overline{A}, \overline{L}$

GRAPH USAGE AND APPLICATIONS

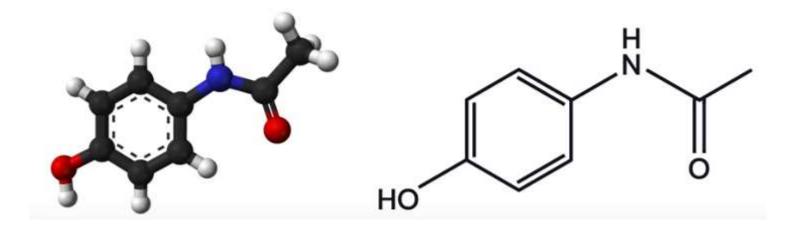
GRAPH DATA IS EVERYWHERE



MOLECULES ARE GRAPHS!

A very natural way to represent molecules is as a graph

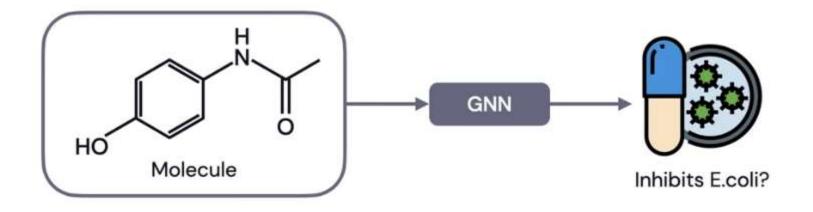
- Atoms as nodes, bonds as edges
- Features such as atom type, charge, bond type...



GNNS FOR MOLECULE CLASSIFICATION

Interesting task to predict is, for example, whether the molecule is a potent drug

- Can do binary classification on whether the drug will inhibit certain bacteria. (E.coli)
- Train on a curated dataset for compounds where response is known.



FOLLOW-UP STUDY

- Once trained, the model can be applied to any molecule.
 - Execute on a large dataset of known candidate molecules.
 - Select the —top-100 candidates from your GNN model.
 - Have chemists thoroughly investigate those (after some additional filtering).
- Discover a previously overlooked compound that is a highly potent antibiotic!

	NOT
	5. /
	s / T
	° - (
s V	
HaN	N
N_N	Cio:
14	Halicin

.00

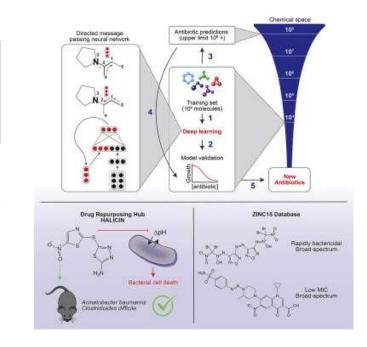
Cell

Volume 180, Issue 4, 20 February 2020, Pages 688-702.e13

Article

A Deep Learning Approach to Antibiotic Discovery

Jonathan M. Stokes ^{1 2 3}, Kevin Yang ^{3 4 10}, Kyle Swanson ^{3 4 10}, Wengong Jin ^{3 4}, Andres Cubillos-Ruiz ^{1 2 5}, Nina M. Donghia ^{1 5}, Craig R. MacNair ⁶, Shawn French ⁶, Lindsey A. Carfrae ⁶, Zohar Bloom-Ackermann ^{2 7}, Victoria M. Tran ², Anush Chiappino-Pepe ^{5 7}, Ahmed H. Badran ², Ian W. Andrews ^{1 2 5}, Emma J. Chory ^{1 2}, George M. Church ^{5 7 8}, Eric D. Brown ⁶, Tommi S. Jaakkola ^{3 4}, Regina Barzilay ^{3 4 9} A 🖾, James J. Collins ^{1 2 5 8 9 11} A



nature

Subscribe

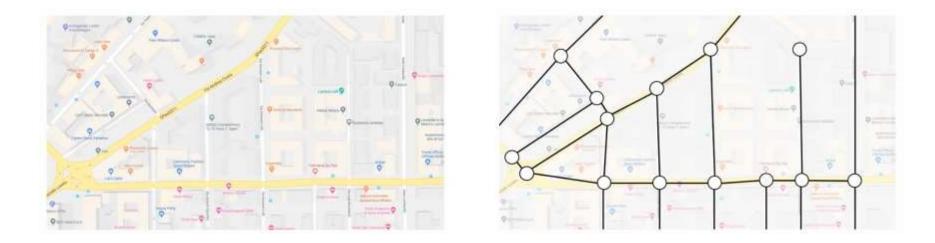
NEWS · 20 FEBRUARY 2020

Powerful antibiotics discovered using AI

Machine learning spots molecules that work even against 'untreatable' strains of bacteria.

TRAFFIC MAPS ARE GRAPHS!

Transportation maps (e.g. the ones found on Google Maps) naturally modeled as graphs.

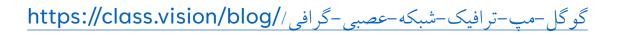


Nodes could be **intersections**, and **edges** could be **roads**. (Relevant **node features**: road length, current speeds, historical speeds)

DEEPMIND'S ETA PROBLEM!

Partition candidate route into supersegments, sampled proportionally to (est.) traffic density.

Run GNN on super-segment graph to estimate estimated time of arrival (ETA) (graph regression).



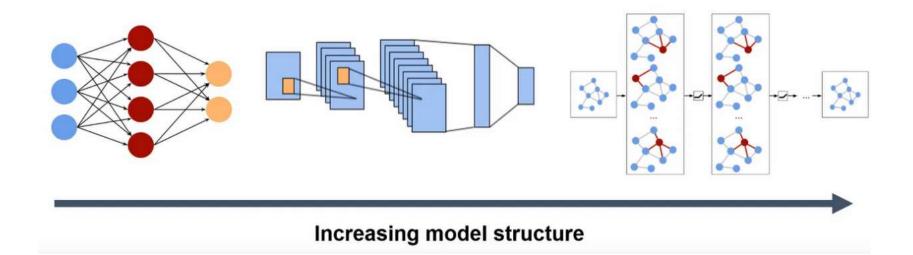
RECOMMENDER SYSTEMS

A common task on **social networks** is **recommendation**.

- Based on a user's preferences, recommend new content
- Can leverage existing links as adjacency input to a (link-prediction) GNN!
- Major issue: our methods (so far) assume the graph is processed all-at- once! (one solution is GraphSAGE)

GRAPH CHALLENGE AND PROBLEMS

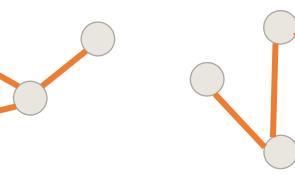
WHY USE GRAPHS? WHY NOT JUST USE MLP OR ATTENTION AND LEARN "EVERYTHING" END-TO-END?



PROBLEM: GRAPH DATA IS DIFFERENT

Challenge 1: Data size and shape

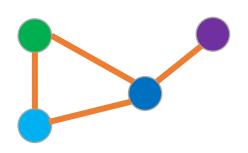
It should be Size independent



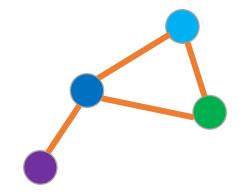
PROBLEM: GRAPH DATA IS DIFFERENT

Challenge 2: Isomorphism

It should be **Permutation invariance**



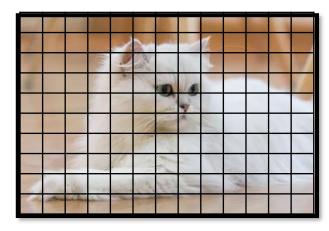
We cannot feed adjacency matrix to MLP

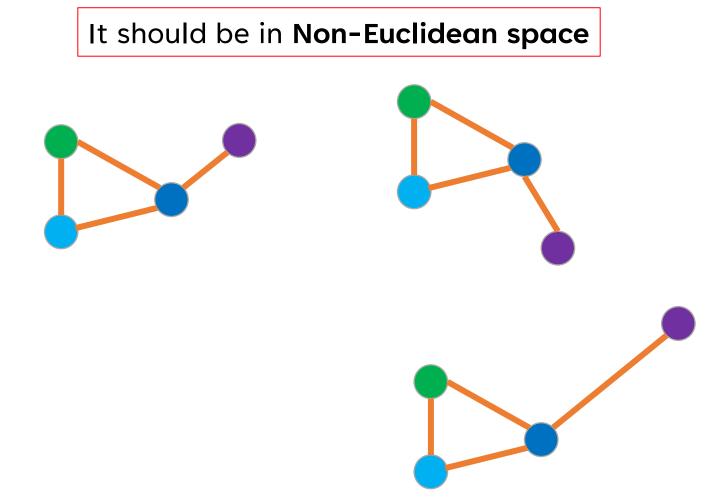


20XX

PROBLEM: GRAPH DATA IS DIFFERENT

Challenge 3: Grid structure





OTHER CHALLENGES WITH GRAPH CONVOLUTIONS

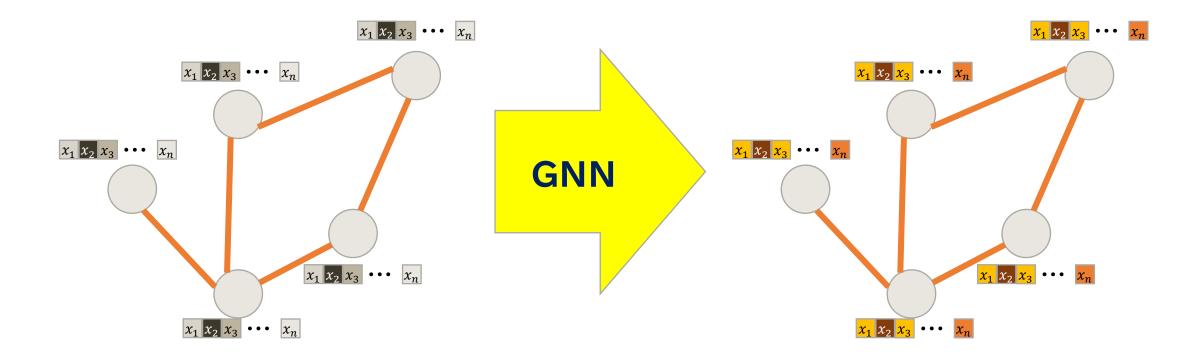
Desirable properties for a graph convolutional layer:

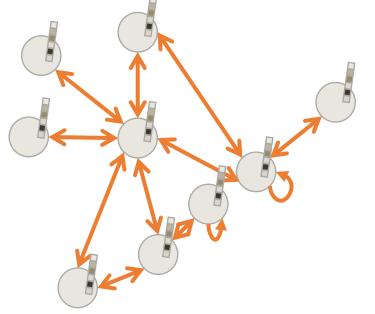
Computational and storage efficiency (~O(V + E))
 Fixed number of parameters (independent of input size)
 Localisation (acts on a local neighbourhood of a node)
 Specifying different importances to different neighbours
 Applicability to inductive problems.

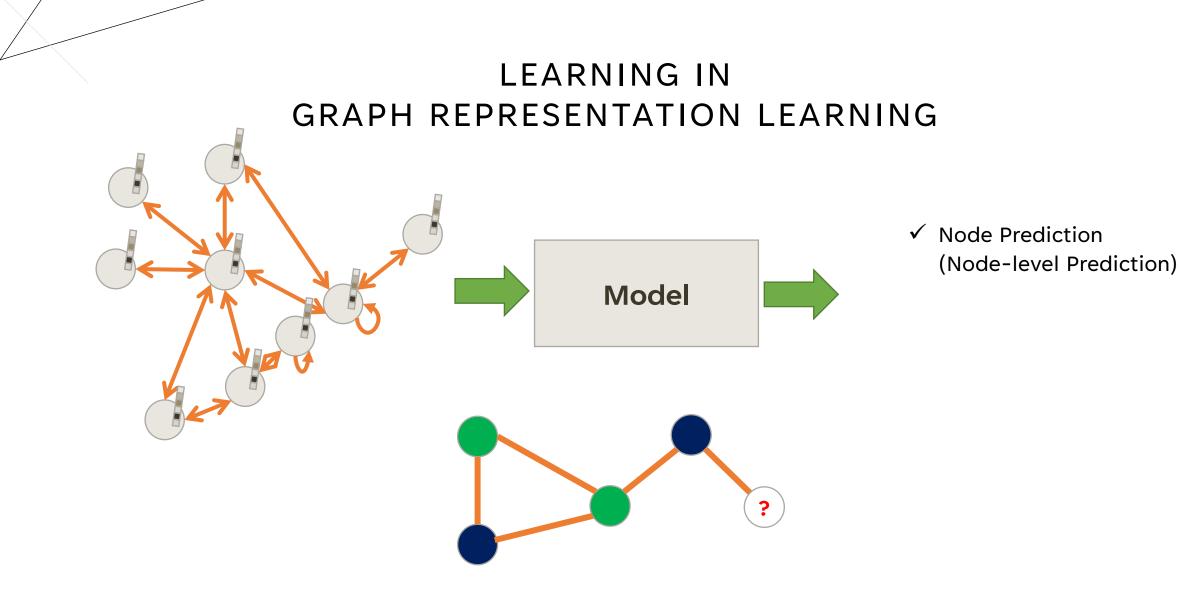
LEARNING IN GRAPH

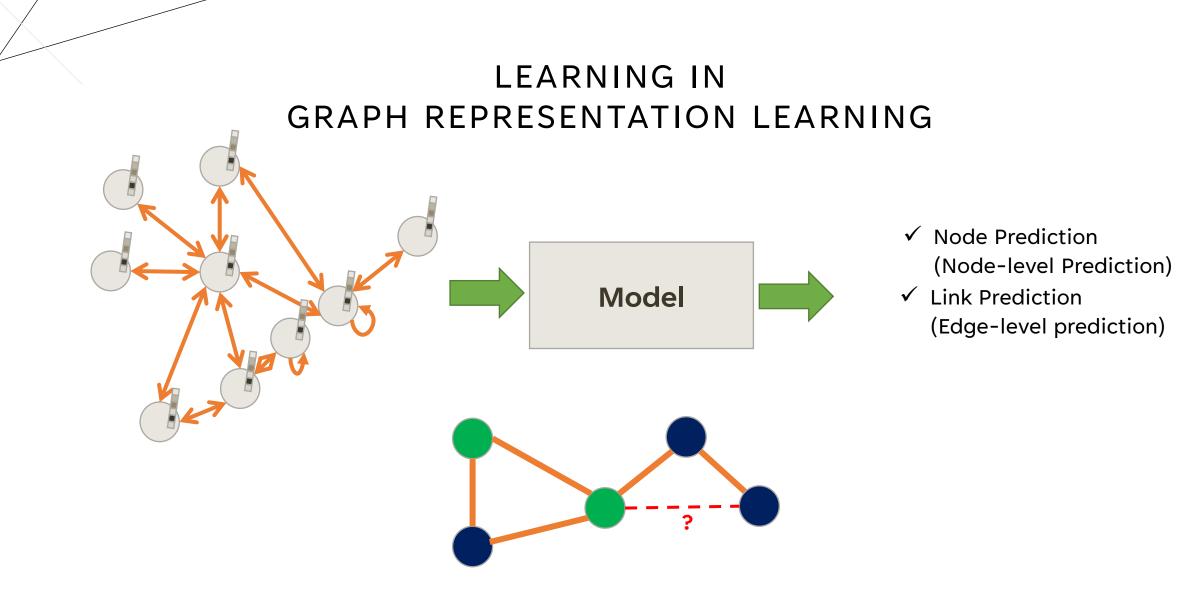
20XX

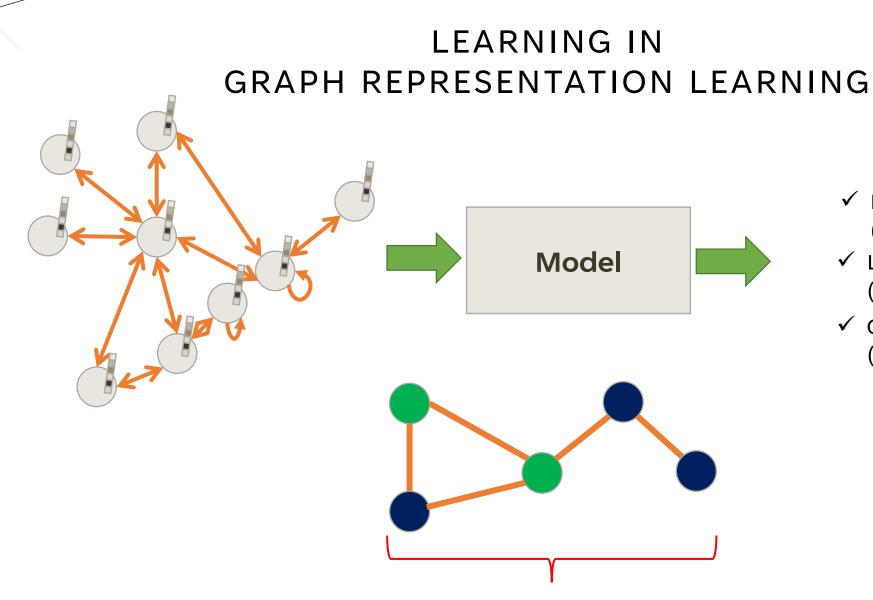
REPRESENTATION LEARNING











- ✓ Node Prediction (Node-level Prediction)
- ✓ Link Prediction (Edge-level prediction)
- ✓ Graph representation (Graph-level prediction)

WHAT TYPES OF PROBLEMS CAN GNNS SOLVE?

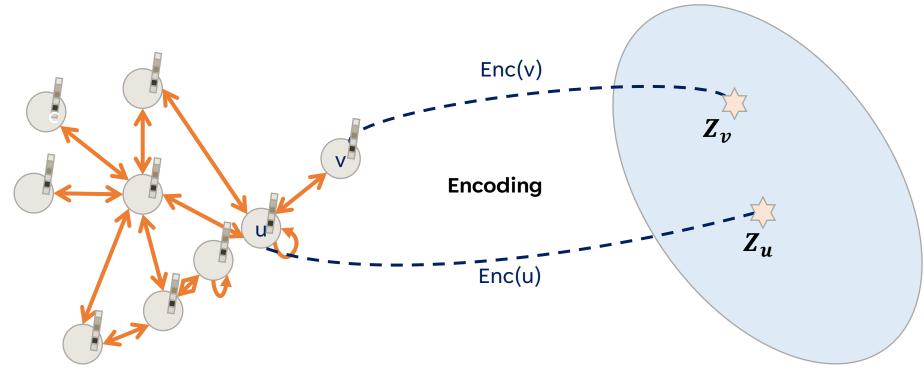
Unsupervised

- Node, Edge, or Graph clustering
 - Use embeddings to find "similar" nodes, edges, or graphs
- Link Prediction
- Graph Generation

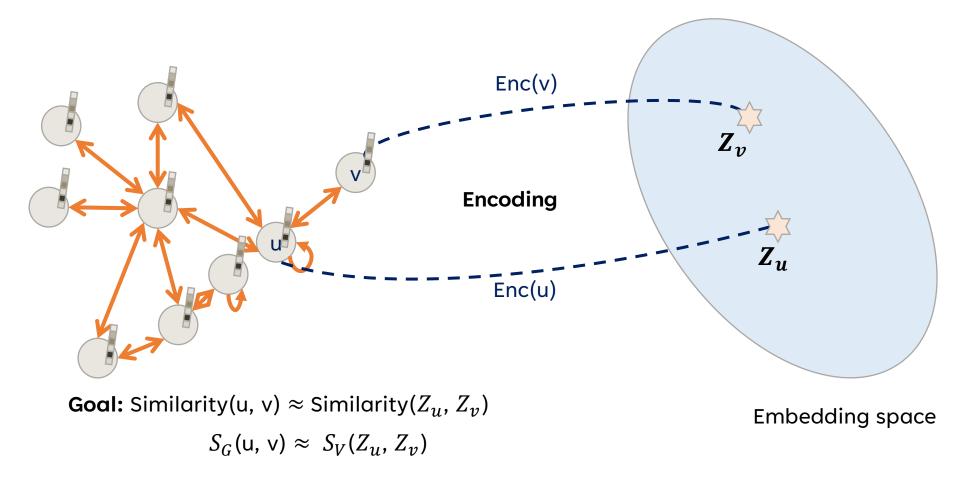
Supervised

- Node, Edge, or Graph classification / regression
 - Use embeddings to predict based on known data

"A Fair Comparison of Graph Neural Networks for Graph Classification", ICLR 2020 "Revisiting Graph Neural Networks for Link Prediction" (2020)

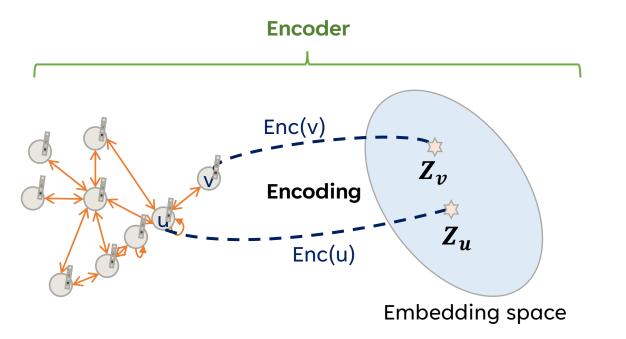


Embedding space

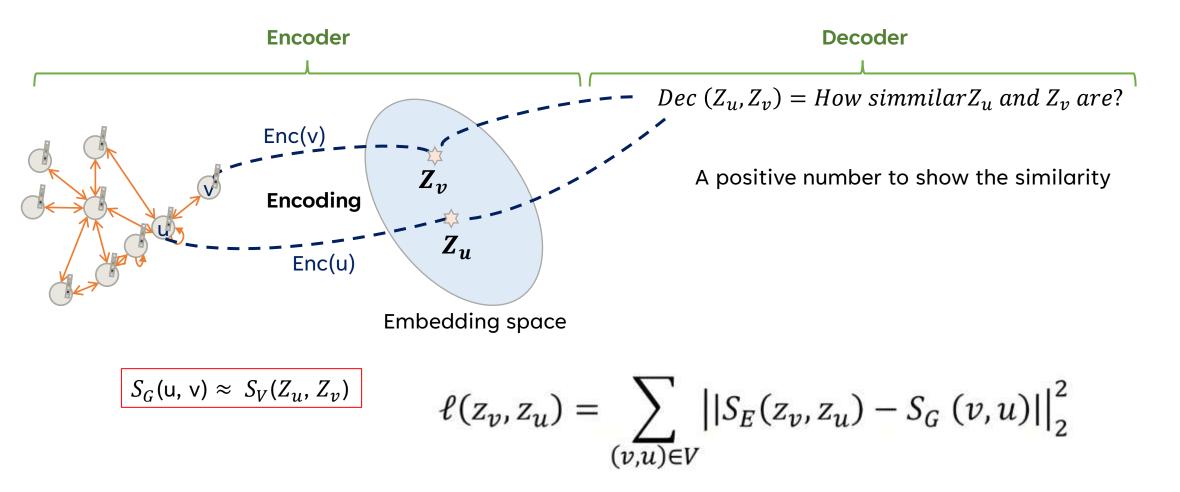




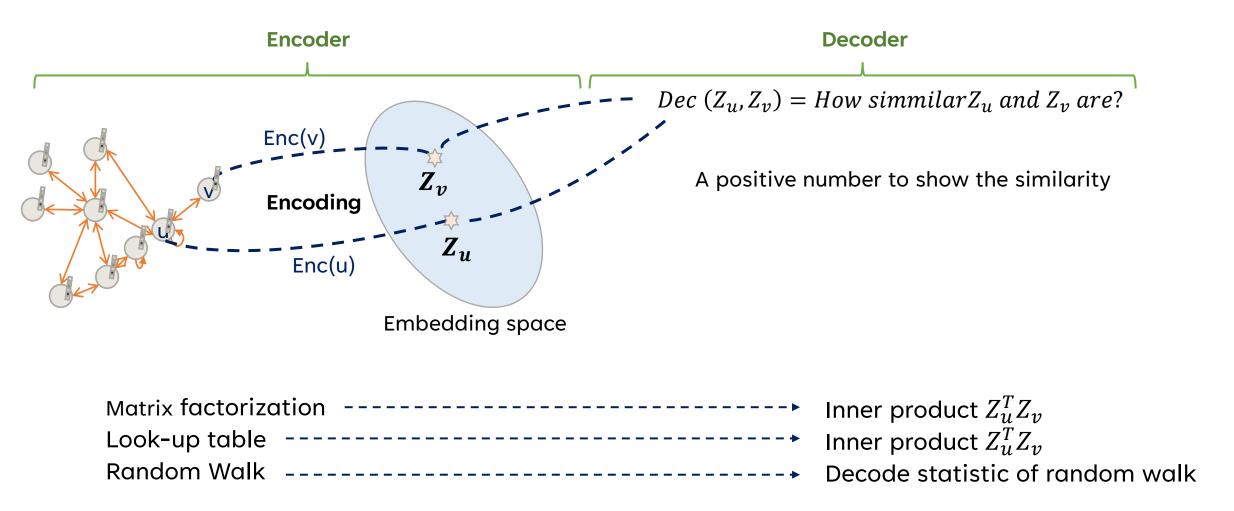
HOW TO ENCODE AND DECODE?



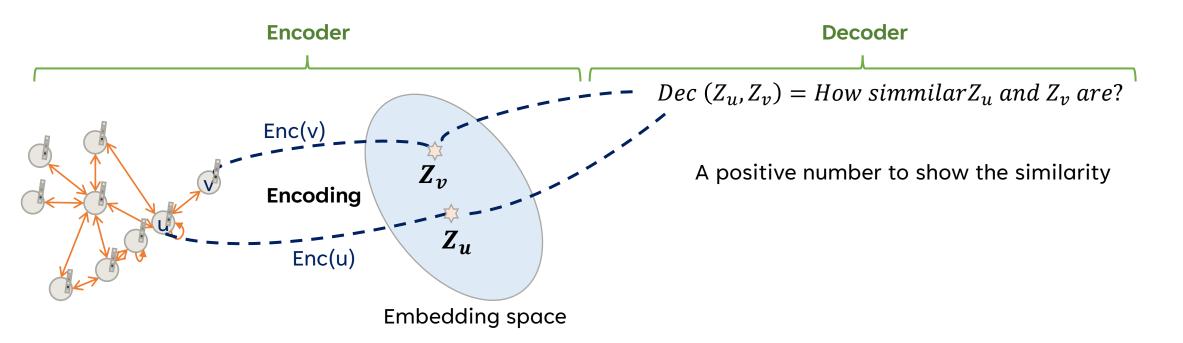
HOW TO ENCODE AND DECODE?



HOW TO ENCODE AND DECODE?



DRAWBACKS



No parameter sharing: Computationally expensive No semantic information: Integration of Feature nodes are difficult Not Inductive: Cannot predict embedding for unseen data (Inherently Transudative)

DEEP VS SHALLOW

Older methods ("shallow", non-neural network models) Deepwalk, node2vec

Generally fallen out of favor with researchers because:

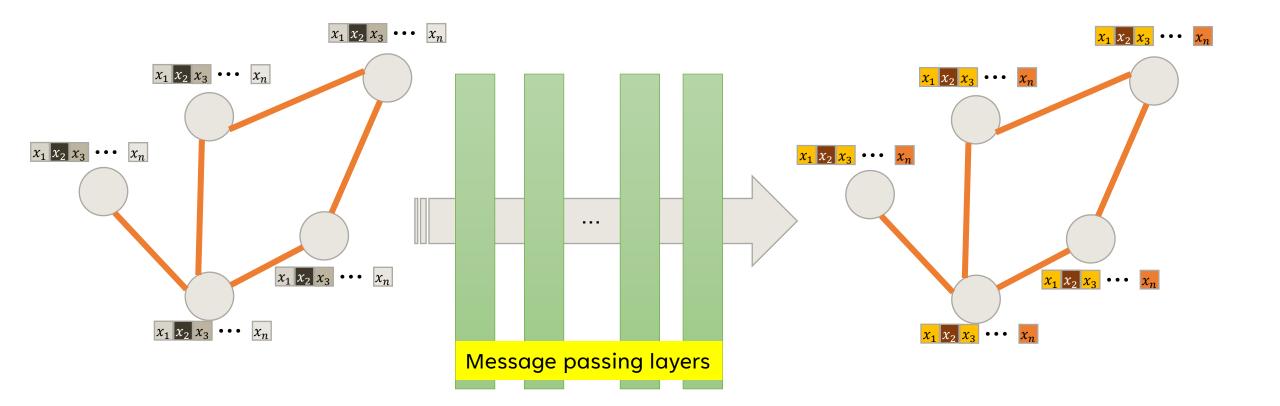
- No parameter sharing (bad scaling, overfitting)
- **Transductive** (only work with nodes present during training)

GNNs solve these problems, they can

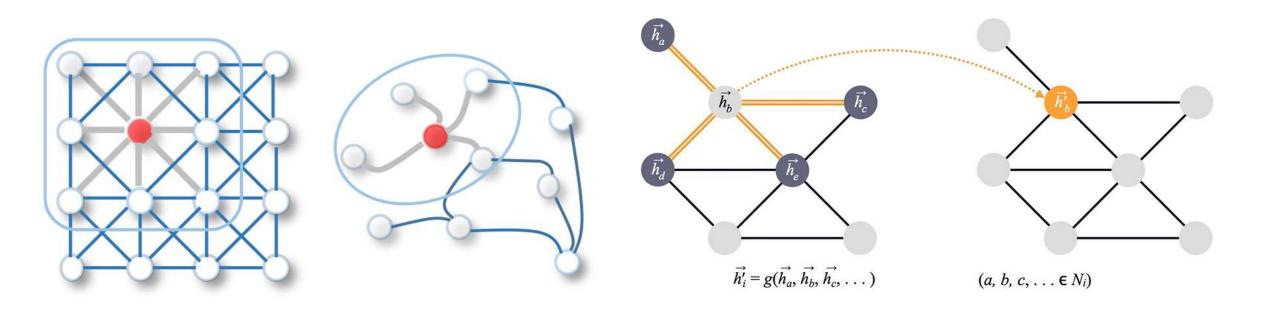
- ✓ Share parameters
- \checkmark Can generalize to inductive tasks

inductive and transductive!

REPRESENTATION LEARNING



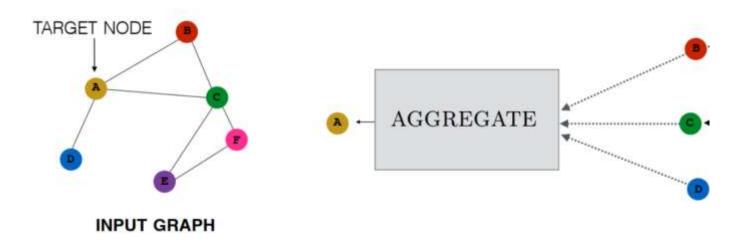
GRAPH CONVOLUTIONAL NETWORK



A Comprehensive Survey on Graph Neural Networks

UNDERSTANDING GRAPH NEURAL NETWORKS

GNNs were originally based on 2-step message passing



1. Aggregate :

Pass information (the "message") from a target node's neighbors to the target node

2. Update:

Update each node's features based on "message" to form an embedded representation

 $h_u = UPDATE(h_u, AGREGATE(\{h_v, \forall v \in N(u)\}))$

h = node features / embeddings

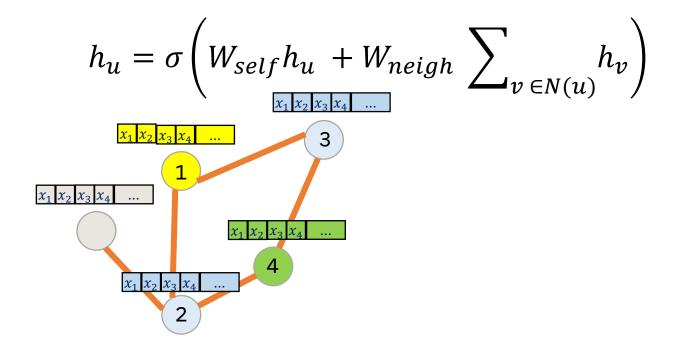
Aggregate function operates over sets, must be permutation invariant or permutation equivariant

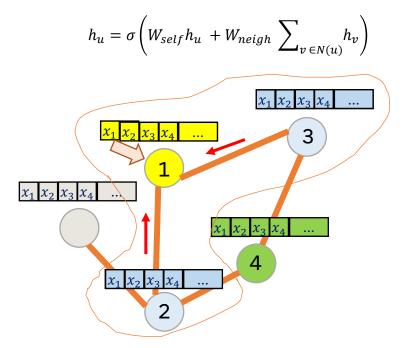
 $h_u = UPDATE(h_u, AGREGATE(\{h_v, \forall v \in N(u)\}))$

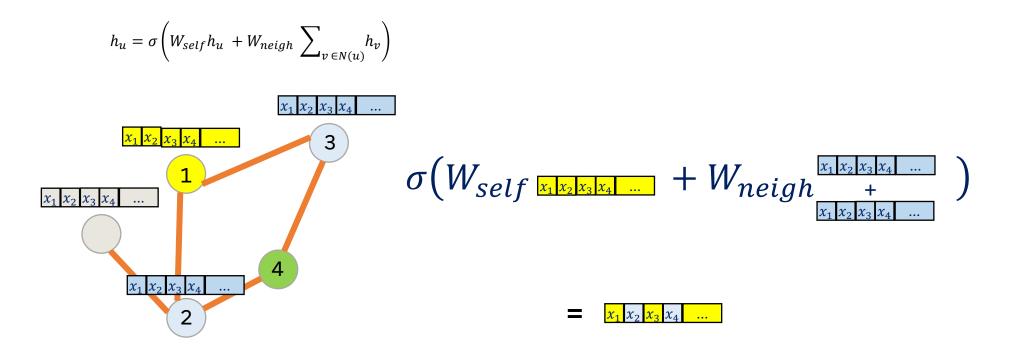
h = node features / embeddings

Aggregate function operates over sets, must be permutation invariant or permutation equivariant

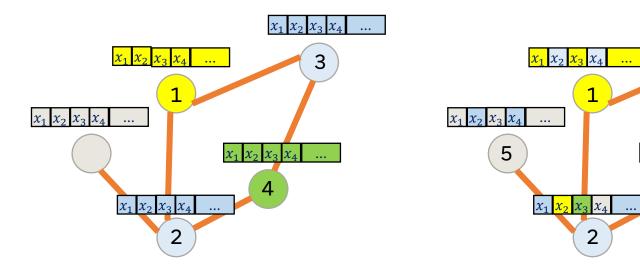
$$h_{u} = \sigma \left(W_{self} h_{u} + W_{neigh} \sum_{v \in N(u)} h_{v} \right)$$







$$h_{u} = \sigma \left(W_{self} h_{u} + W_{neigh} \sum_{v \in N(u)} h_{v} \right)$$

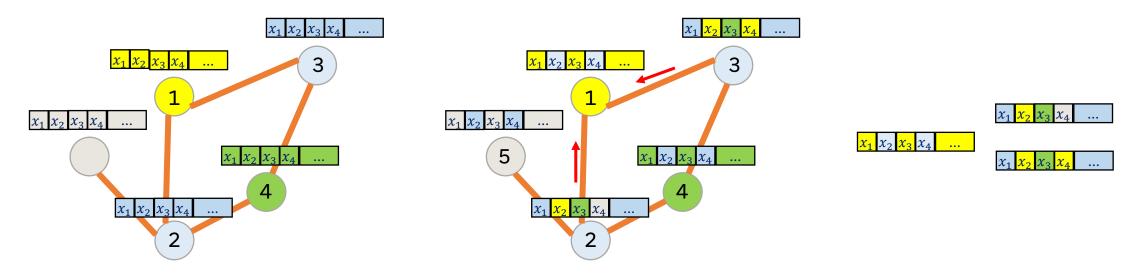


 $x_1 x_2 x_3 x_4 \dots$

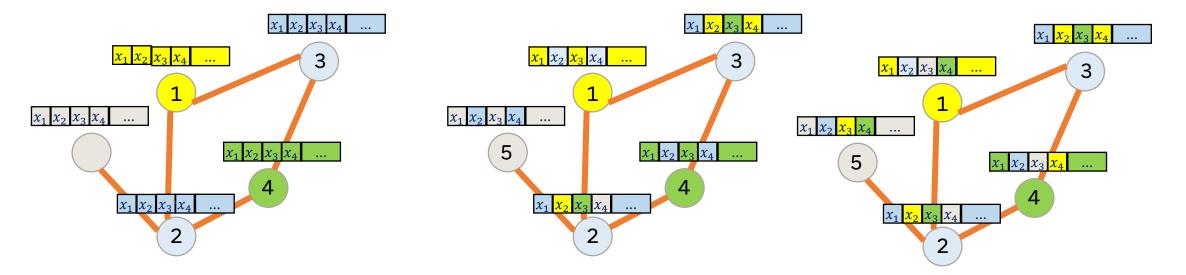
3

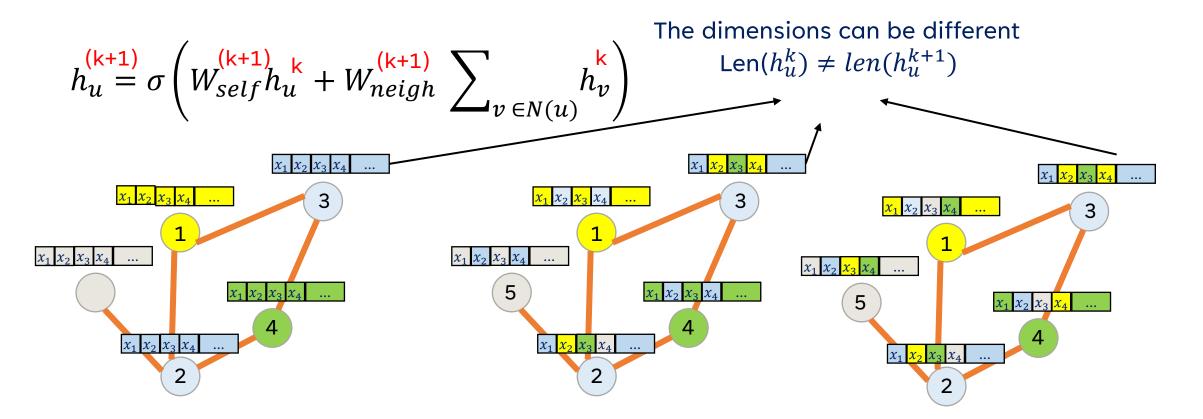
 $x_1 x_2 x_3 x_4 \dots$

$$h_{u} = \sigma \left(W_{self} h_{u} + W_{neigh} \sum_{v \in N(u)} h_{v} \right)$$



$$h_{u} = \sigma \left(W_{self} h_{u} + W_{neigh} \sum_{v \in N(u)} h_{v} \right)$$





✓ The local feature aggregation can be compared to learnable CNN kernels: https://distill.pub/2021/gnn-intro/

$$\mathbf{h}_{u}^{(k+1)} = \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \text{AGGREGATE}^{(k)}(\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right)$$
$$h_{u}^{(k+1)} = \sigma \left(W_{\text{self}}^{(k+1)} h_{u}^{k} + W_{\text{neigh}}^{(k+1)} \sum_{v \in \mathcal{N}(u)} h_{v}^{(k)} \right)$$

h = node features / embeddings
k = number of hops

Each node's updated value becomes a weighting of its previous value + a weighting of its neighbor's values

The choice to sum over neighboring nodes isn't the only valid choice, other choices include mean, max, concatenation, etc.

$$\mathbf{h}_{u}^{(k+1)} = \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \text{AGGREGATE}^{(k)}(\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right)$$
$$h_{u}^{(k+1)} = \sigma \left(W_{\text{self}}^{(k+1)} h_{u}^{k} + W_{\text{neigh}}^{(k+1)} \sum_{v \in \mathcal{N}(u)} h_{v}^{(k)} \right)$$

Collapse Wself and Wneigh into W by adding self-loops to the adjacency matrix A

$$\mathbf{H}^{(k+1)} = \sigma\left((\mathbf{A} + \mathbf{I})\mathbf{H}^{(k)}\mathbf{W}^{(k+1)}\right)$$

This method reduces message passing to relatively simple matrix multiplication

THE MEAN-POOLING UPDATE RULE

$$H^{(k+1)} = \sigma\left((A+I)H^{(k)}W^{(k+1)}\right)$$

Problem: Multiplication by A+I may increase the scale of the output features.

✓ **Solution**: We need to normalize appropriately:

$$H^{(k+1)} = \sigma \left(D^{-1} (A+I) H^{(k)} W^{(k+1)} \right)$$

We arrive at the mean-pooling update rule:

$$h^{(k+1)} = \sigma \sum_{j \in N_i} \frac{1}{|N_i|} W h_j^k$$

which is simple but versatile (common for inductive problems!).

GCN GRAPH CONVOLUTIONAL NETWORK

$$\mathbf{H}^{(k+1)} = \sigma \left((\mathbf{A} + \mathbf{I}) \mathbf{H}^{(k)} \mathbf{W}^{(k+1)} \right)$$

"Original" GNN

(Merkwirth, 2005 + Scarselli et al., 2009)

$$\mathbf{H}^{(k+1)} = \sigma \Big(\tilde{\mathbf{A}} \mathbf{H}^{(k)} \mathbf{W}^{(k+1)} \Big)$$
 GCN
(Kipf + Welling, 2016)

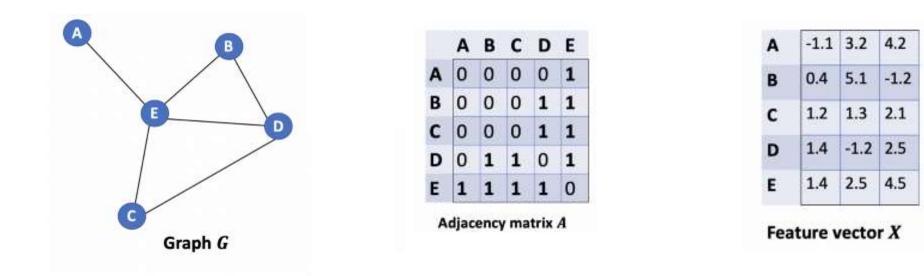
 $\tilde{\mathbf{A}} = (\mathbf{D} + \mathbf{I})^{-\frac{1}{2}} (\mathbf{I} + \mathbf{A}) (\mathbf{D} + \mathbf{I})^{-\frac{1}{2}}$

Normalizes by # of nodes in neighborhood

$$h^{(k+1)} = \sigma\left(\sum_{j \in N_i} \frac{1}{\sqrt{|N_i| |N_j|}} W h_j^k\right)$$

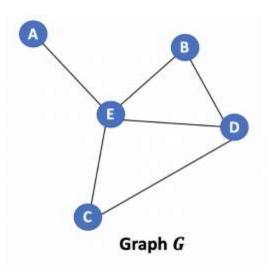
Node-wise, this can be written as follows:

INTUITION AND THE MATH'S BEHIND



https://www.topbots.com/graph-convolutional-networks/

INTUITION AND THE MATH'S BEHIND



	Α	В	С	D	E
A	0	0	0	0	1
в	0	0	0	1	1
с	0	0	0	1	1
D	0	1	1	0	1
E	1	1	1	1	0

Adjacency matrix A

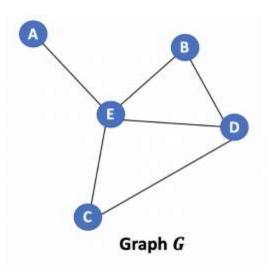
A	-1.1	3.2	4.2
в	0.4	5.1	-1.2
с	1.2	1.3	2.1
D	1.4	-1.2	2.5
E	1.4	2.5	4.5

Feature vector X

 $H^{(k+1)} = \sigma \left(A H^{(k)} W^{(k+1)} \right)$

$$h^{(k+1)} = \sigma \sum_{j \in N_i} W h_j^k$$

INTUITION AND THE MATH'S BEHIND



	Α	В	С	D	E
A	0	0	0	0	1
в	0	0	0	1	1
с	0	0	0	1	1
D	0	1	1	0	1
E	1	1	1	1	0

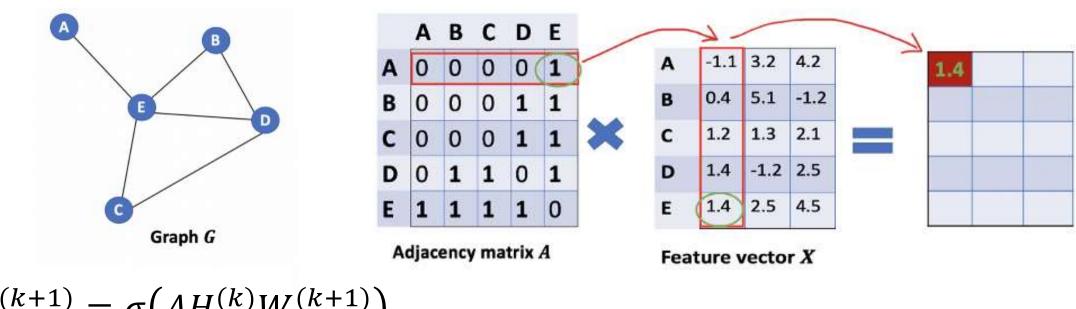
Adjacency matrix A

A	-1.1	3.2	4.2
в	0.4	5.1	-1.2
с	1.2	1.3	2.1
D	1.4	-1.2	2.5
E	1.4	2.5	4.5

Feature vector X

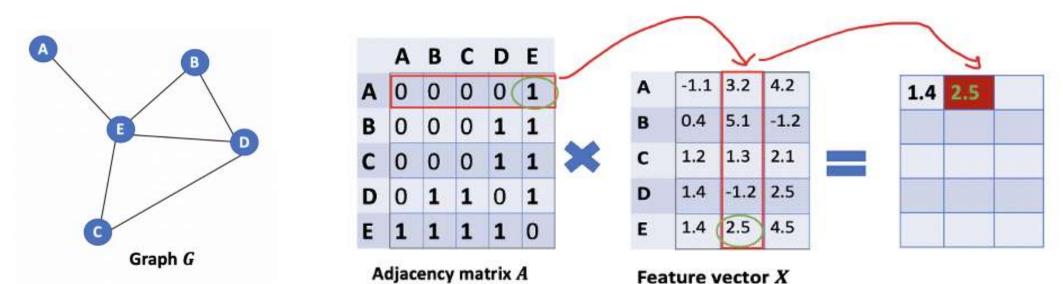
 $H^{(k+1)} = \sigma \left(A H^{(k)} W^{(k+1)} \right)$

$$h^{(k+1)} = \sigma \sum_{j \in N_i} W h_j^k$$



$$H^{(k+1)} = \sigma(AH^{(k)}W^{(k+1)})$$

 $h^{(k+1)} = \sigma \sum_{j \in N_i} W h_j^k$

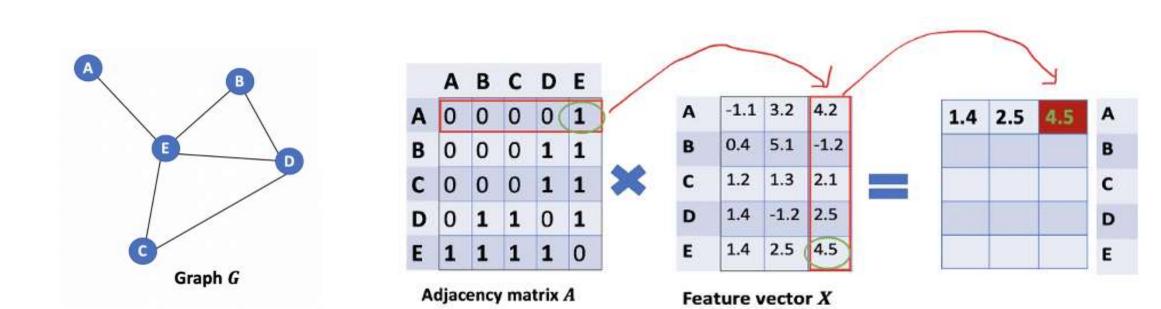


$$H^{(k+1)} = \sigma \left(A H^{(k)} W^{(k+1)} \right)$$

 $h^{(k+1)} = \sigma \sum_{j \in N_i} W h_j^k$

re re

20XX



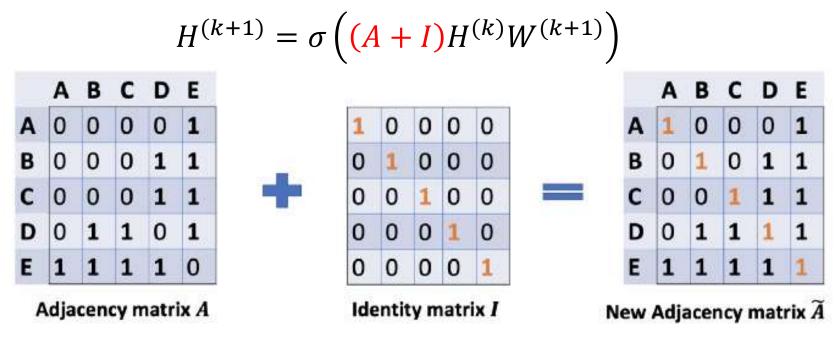
$$H^{(k+1)} = \sigma \left(A H^{(k)} W^{(k+1)} \right)$$

 $h^{(k+1)} = \sigma \sum_{j \in N_i} W h_j^k$

20XX

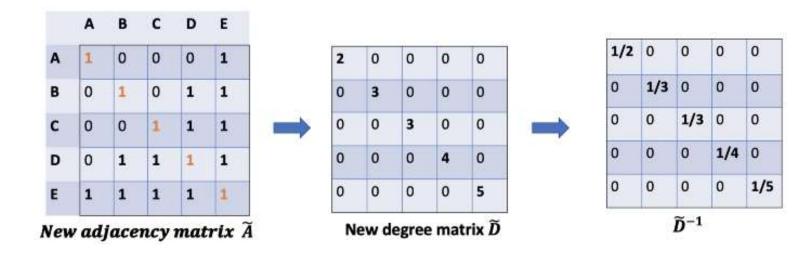
1. We miss the **feature of the node itself**. For example, the first row of the result matrix should contain features of node A too.

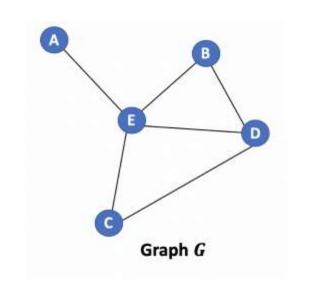
1. We miss the **feature of the node itself**. For example, the first row of the result matrix should contain features of node A too.



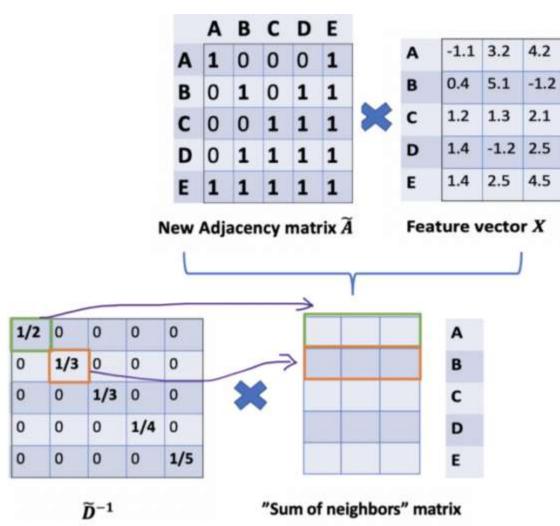
- 1. We miss the **feature of the node itself**. For example, the first row of the result matrix should contain features of node A too.
- 2. Instead of sum() function, we need to take the average, or even better, the weighted average of neighbors' feature vectors. Why don't we use the sum() function? The reason is that when using the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes tend to get small aggregate vectors, which may later cause exploding or vanishing gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale of input data. Thus, we need to normalize these vectors to get rid of the potential issues.

2. Instead of sum() function, we need to take the average, or even better, the weighted average of neighbors' feature vectors. Why don't we use the sum() function? The reason is that when using the sum() function, high-degree nodes are likely to have huge v vectors, while low-degree nodes tend to get small aggregate vectors, which may later cause exploding or vanishing gradients (e.g., when using sigmoid). Besides, Neural networks seem to be sensitive to the scale of input data. Thus, we need to normalize these vectors to get rid of the potential issues.

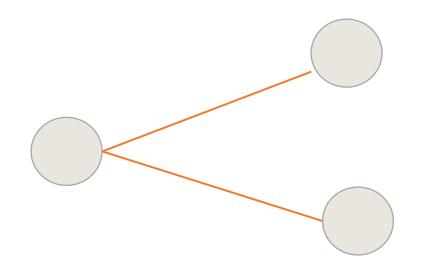




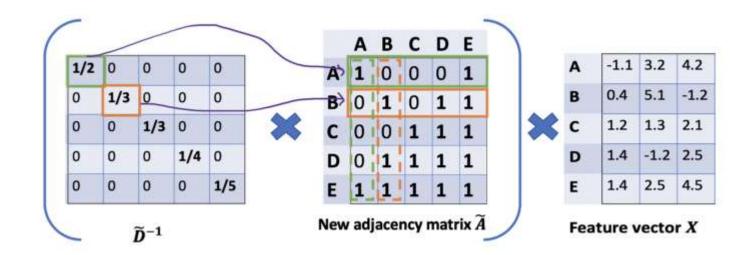
$$H^{(k+1)} = \sigma \left(D^{-1} (A + I) H^{(k)} W^{(k+1)} \right)$$
$$h^{(k+1)} = \sigma \sum_{j \in N_i} \frac{1}{|N_i|} W h_j^k$$

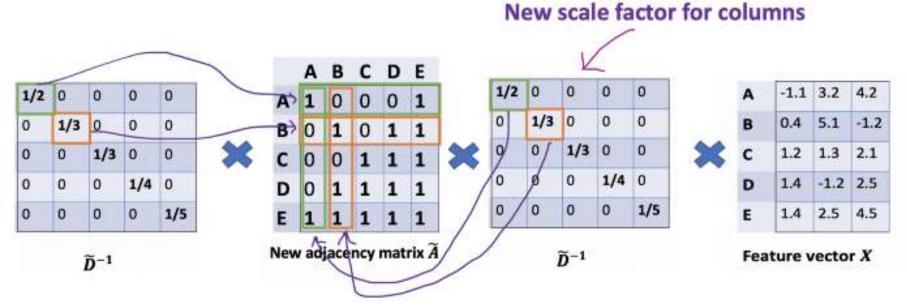


• So far, so good!

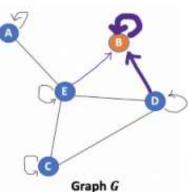


- So far, so good!
- Intuitively, it should be better if we treat high and low degree nodes differently.

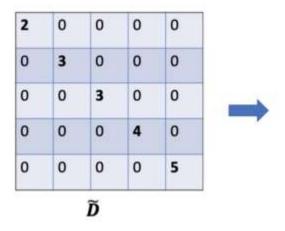




The new scaler gives us the "weighted" average. What are we doing here is to put more weights on the nodes that have low-degree and reduce the impact of high-degree nodes.



One more minor note: When using two scalers (\tilde{D}_{ii} and \tilde{D}_{jj}), we actually normalize twice, one time for the row as before, and another time for the column. It would make sense if we rebalance by modifying $\tilde{D}_{ii}\tilde{D}_{jj}$ to $\sqrt{\tilde{D}_{ii}\tilde{D}_{jj}}$. In other words, instead of using \tilde{D}^{-1} , we use $\tilde{D}^{-1/2}$. So, we further alter the formula to $\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}X$, which is exactly used in the paper.



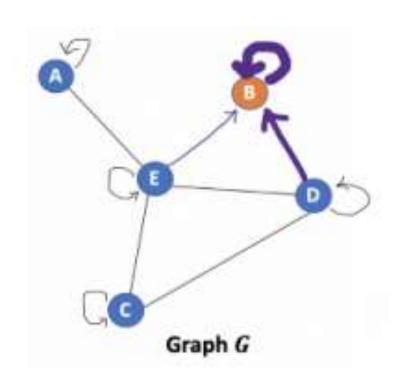
1/2	0	0	0	0	
0	1/3	0	0	0	
0	0	1/3	0	0	
0	0	0	1/4	0	
0	0	0	0	1/5	

1/ √2	0	0	0	0
0	1/ √3	0	0	0
0	0	$\frac{1}{\sqrt{3}}$	0	0
0	0	0	1/2	0
0	0	0	0	1/

$$\mathbf{H}^{(k+1)} = \sigma \left(\tilde{\mathbf{A}} \mathbf{H}^{(k)} \mathbf{W}^{(k+1)} \right)$$

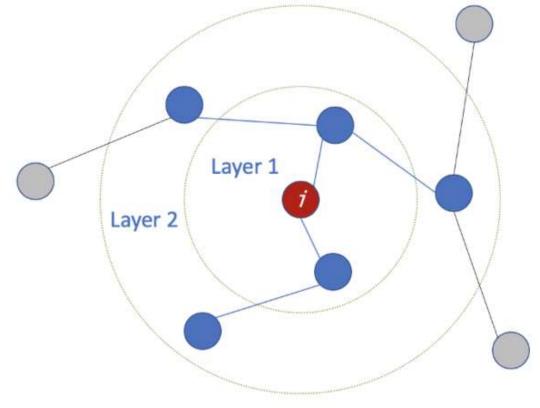
$$\tilde{\mathbf{A}} = (\mathbf{D} + \mathbf{I})^{-\frac{1}{2}} (\mathbf{I} + \mathbf{A}) (\mathbf{D} + \mathbf{I})^{-\frac{1}{2}}$$

$$h^{(k+1)} = \sigma\left(\sum_{j \in N_i} \frac{1}{\sqrt{|N_i| |N_j|}} W h_j^k\right)$$

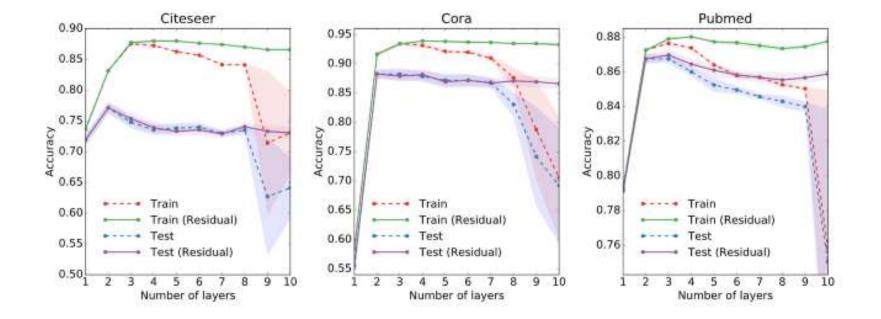


THE NUMBER OF LAYERS

- □ The number of layers is the farthest distance that node features can travel.
- □ Normally we don't want to go too far. With 6–7 hops, we almost get the entire graph which makes the aggregation less meaningful.

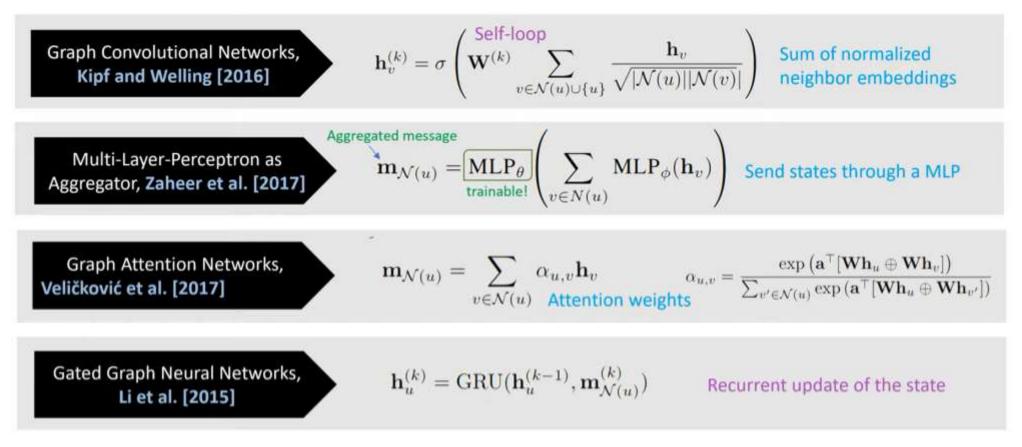


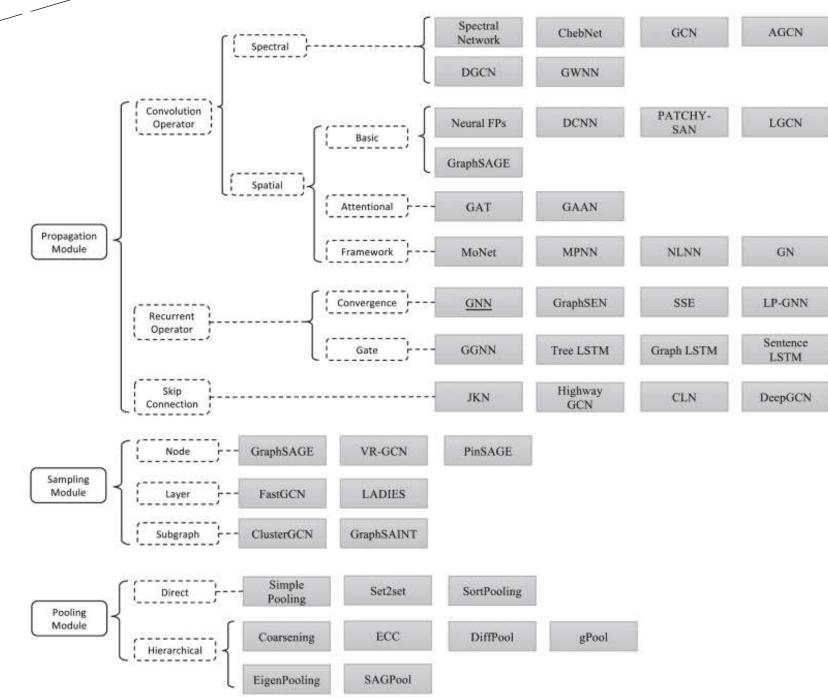
HOW MANY LAYERS SHOULD WE STACK THE GCN?



GNN VARIANTS

$h_u = UPDATE(h_u, AGREGATE(\{h_v, \forall v \in N(u)\}))$





Source: Graph Neural Networks: A Review of Methods and Applications

GRAPH REPRESENTATION LEARNING

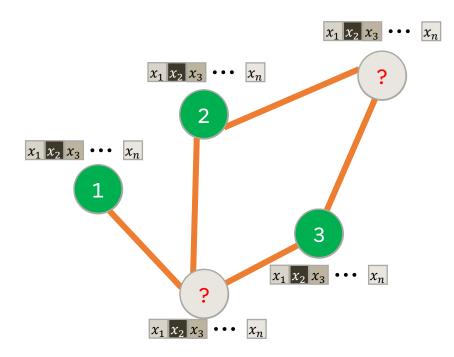
WILLIAM L. HAMILTON

McGill University

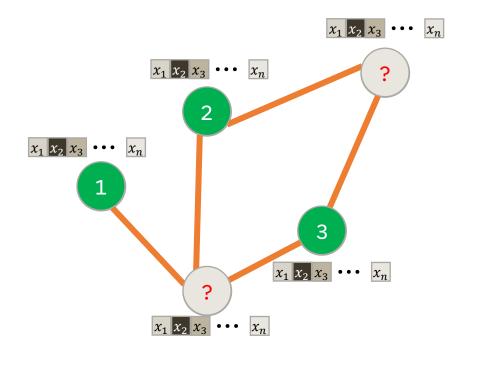
2020

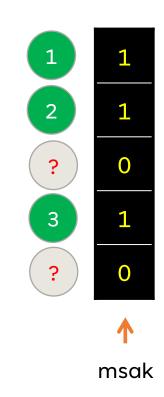
https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

BINARY MASKS FOR NODE-LEVEL PREDICTION

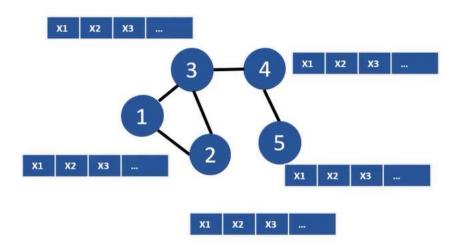


BINARY MASKS FOR NODE-LEVEL PREDICTION

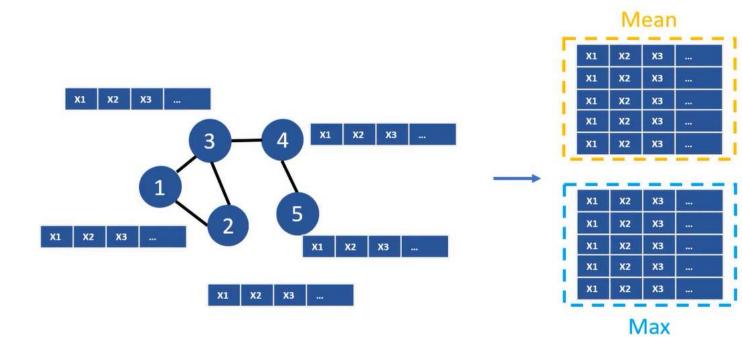




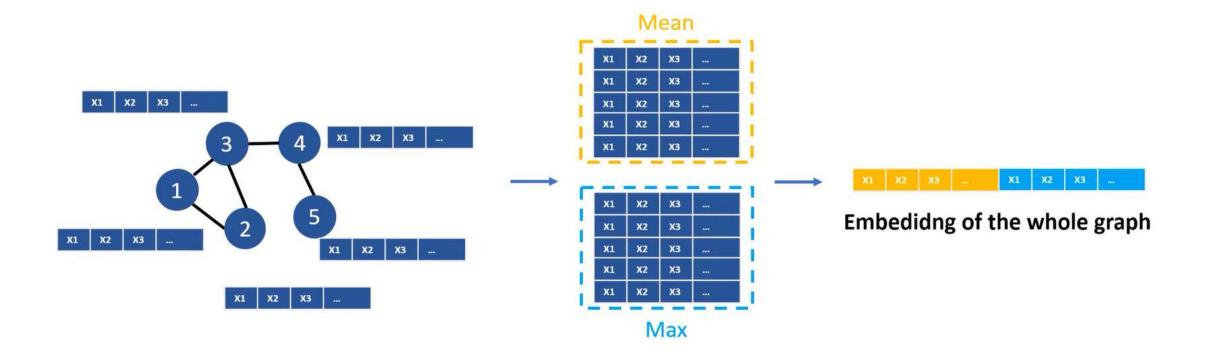
GLOBAL GRAPH POOLING



GLOBAL GRAPH POOLING

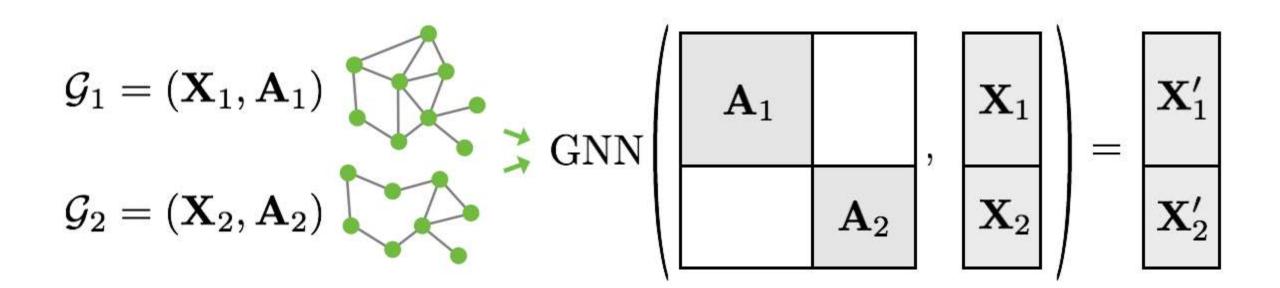


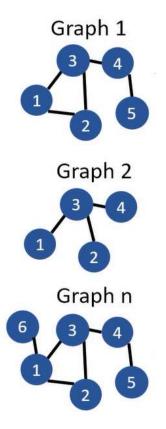
GLOBAL GRAPH POOLING



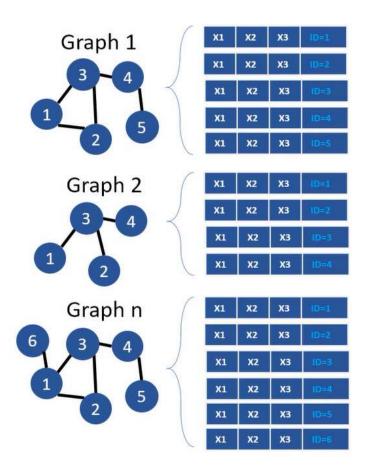
In the image or language domain: rescaling or padding

WHAT ABOUT Graphs?

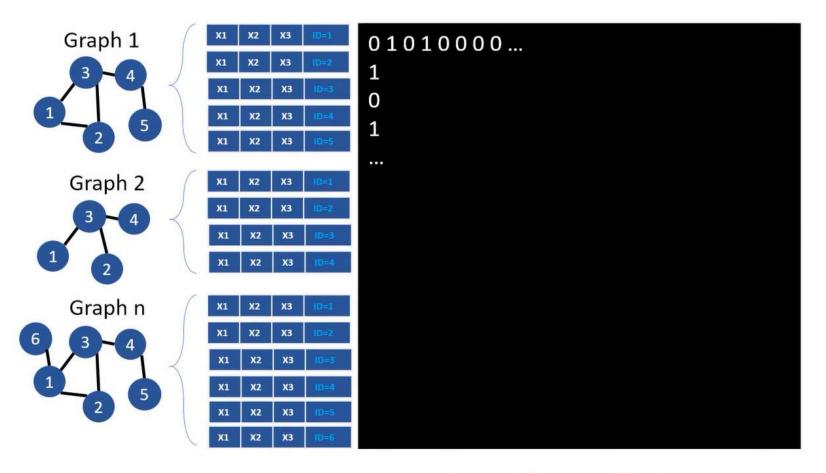




n = Batch Size

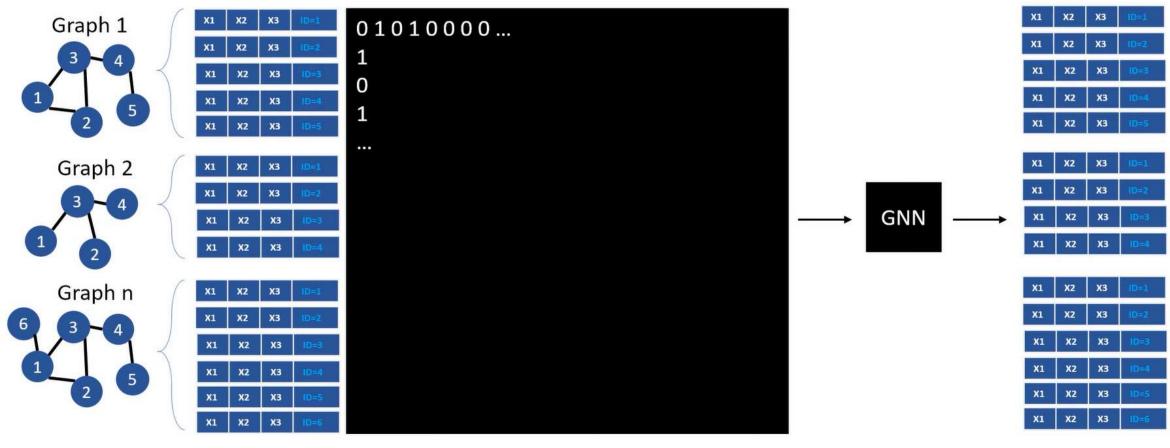


n = Batch Size



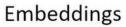
n = Batch Size

Large Adjacency Matrix



n = Batch Size

Large Adjacency Matrix



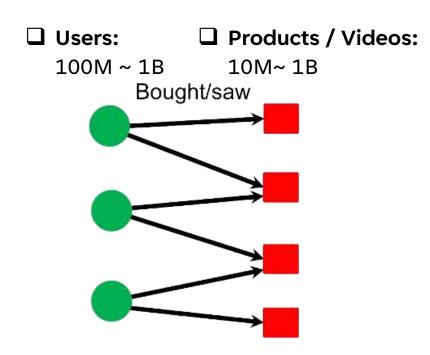
SCALING UP GRAPH NEURAL NETWORKS TO LARGE GRAPHS

Recommender systems:

- Amazone ٠
- YouTube ٠
- Pinterest ٠
- Instagram •

Tasks:

- Recommend Items (Link Prediction) ٠
- Classify users/Items (Node Classification ٠



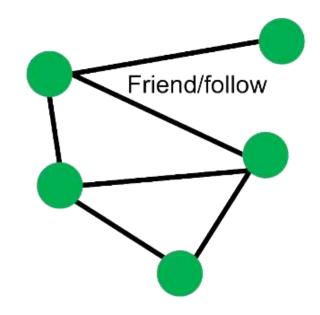
Social Networks

- Facebook
- Twitter
- Instagram

Tasks:

- Friend Recommend(Link Prediction)
- User property recommendation (Node-Level)

Users: 300M ~ 3B



Academic Graph

• Microsoft Academic Graph/

Tasks:

- Paper categorization (node classification)
- Author collaboration recommendation
- Paper citation recommendation (Link prediction)



Knowledge Graphs (KGs)

Entities: 80M ~ 90M Canada Geoffrey Hinton affiliated born in wtih located in graduated from UK University of Graduated is a Paul Martin Toronto from King's College, Person Cambridge

- Wikipedia
- Freebase

- KG completion
- Reasoning

WHAT IS IN COMMON?!

Large-scale:

- #Nodes ranges from 10M to 10B
- #edges ranges from 100M to 100B

Taks:

Node-level:

Use/Item/Paper classification

Link-level:

Recommendation/Completion

PROBLEM!

Full-batch implementation is not feasible for a large graphs

Time inefficiency

• In CPU takes too much time!

Memory Limitations

- GPU memory is extremely limited
- We cannot load entire dataset into memory

SOLUTIONS! SOME **METHODS FOR SCALING UP GNNS**

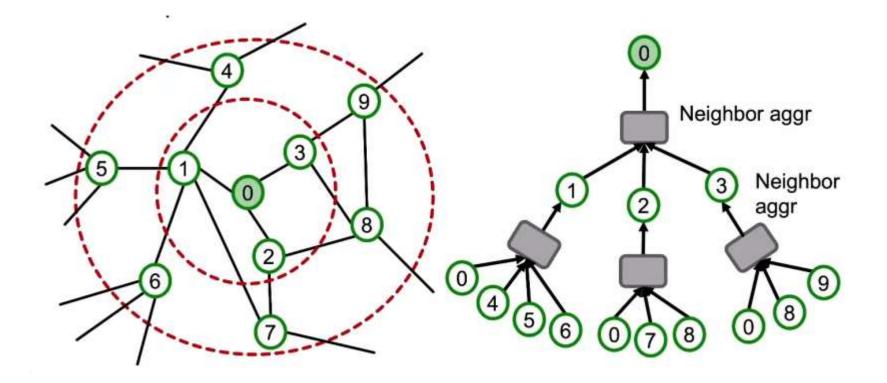
D Perform message-passing over **small subgraphs in each mini-batch**

- Only the subgraphs need to be loaded on a GPU at a time.
- > Neighbour Sampling [Hamilton NeuriPS 2017]
- Cluster-GCN [Chiang et al. KDD 2019]

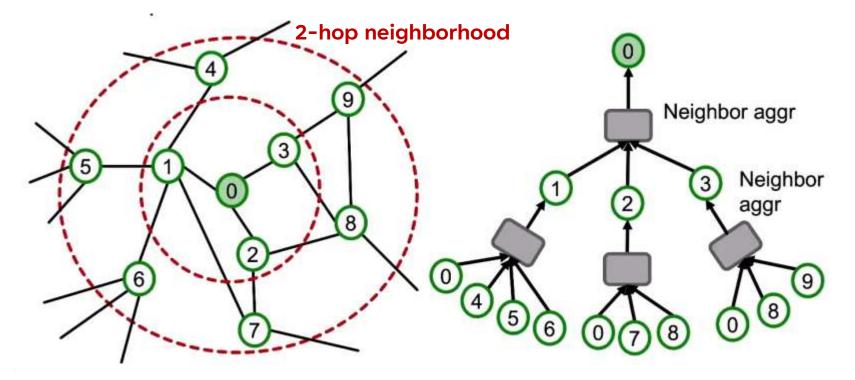
□ Simplifies a GNN into feature-preprocessing operation

- Can be efficiently performed even on a CPU
- Simplified GCN [Wu et al. ICML2019]

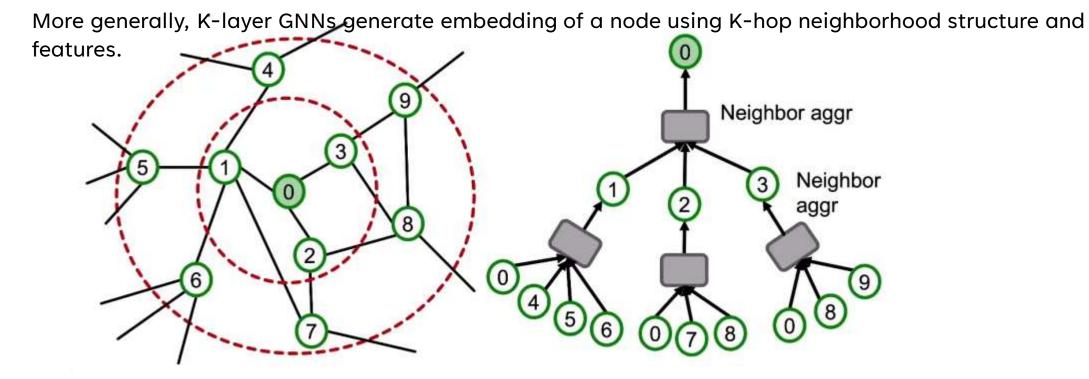
GNNs generate node embeddings via neighbour aggregation.



Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and features.

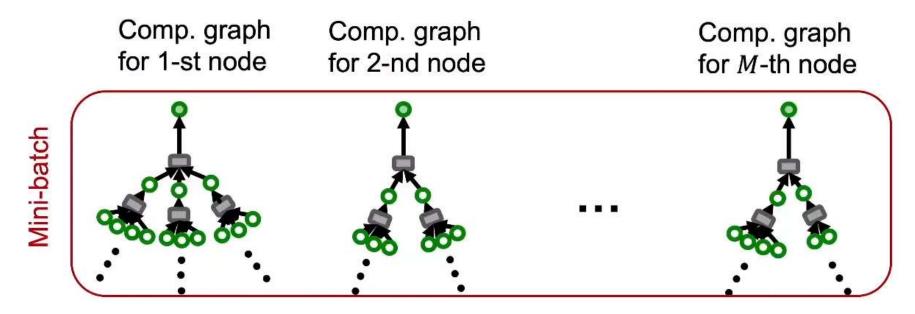


Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and features.



Key insight: To compute embedding of a single node, all we need is the **K-hop neighborhood** (which defines the computation graph).

Given a set of **M different nodes in a mini-batch**, we can generate their embeddings using M computational graphs. **Can be computed on GPU!**

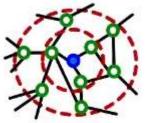


STOCHASTIC TRAINING OF GNNS

We can now consider the following SGD strategy for training K-layer GNNs:

- ➢ Randomly sample M (<< N) nodes.</p>
- For each sampled node v:
 - Get k-hop neighbourhood, and construct the computation graph.
 - Use the above to generate v's embedding.
- > Compute the loss $l_{sub}(\theta)$ averaged over the M nodes.

k-hop neighborhood

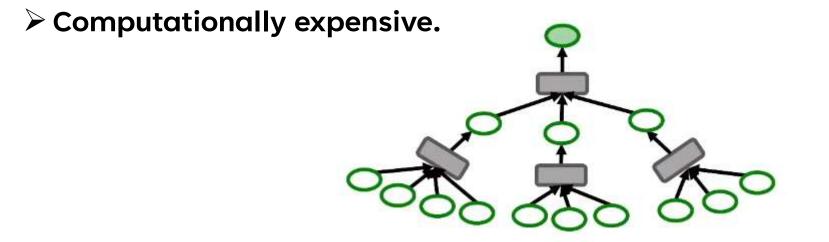


Computational graph

ISSUE STOCHASTIC TRAINING

For each node, we need to get the entire K-hop neighborhood and pass it through the computation graph.

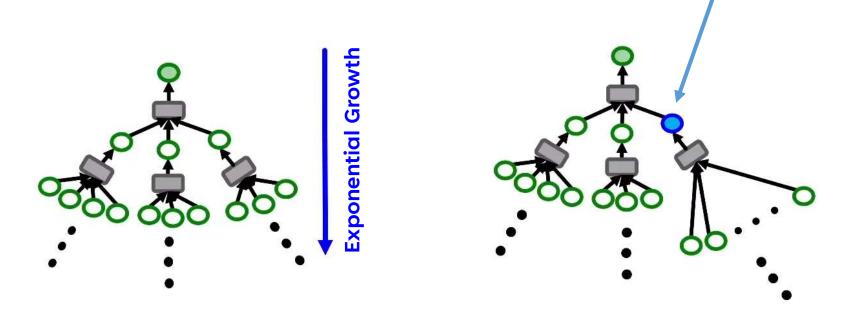
We need to aggregate lot of information just to compute one node embedding.



ISSUE STOCHASTIC TRAINING

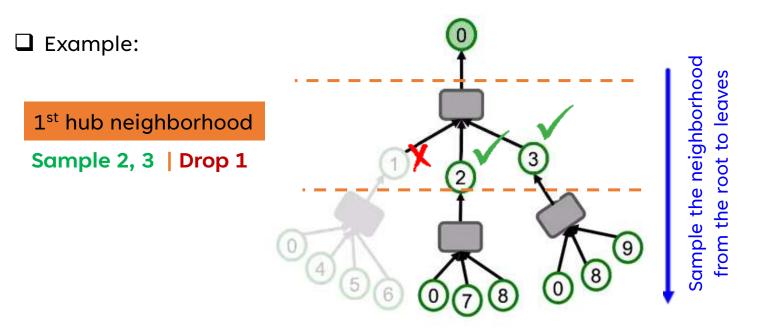
More details:

- Computation graph becomes exponentially large with respect to the layer size K.
- > Computation graph explodes when it hits a hub node (high-degree node).



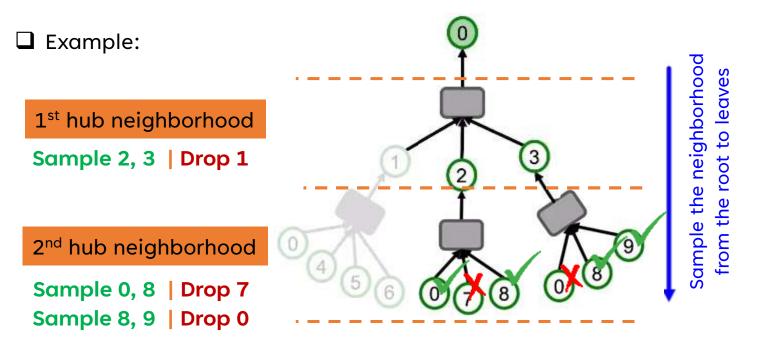
NEIGHBOR SAMPLING

Key idea: Construct the computational graph by (randomly) sampling at most *H* neighbours at each hop.



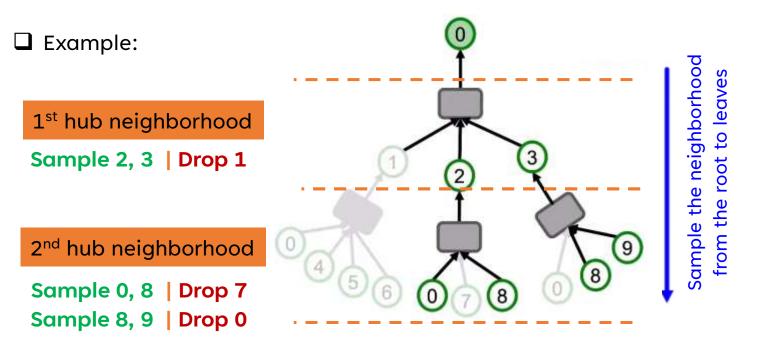
NEIGHBOR SAMPLING

Key idea: Construct the computational graph by (randomly) sampling at most *H* neighbours at each hop.



NEIGHBOR SAMPLING

Key idea: Construct the computational graph by (randomly) sampling at most *H* neighbours at each hop.



***** K-layer GNN will at most involve $\prod_{k=1}^{K} H_k$ leaf nodes in computation graph.

REMARKS ON NEIGHBOR SAMPLING

Remark 1: Trade-off in sampling number H

Smaller H leads to more efficient neighbour aggregation, but results in more unstable training due to the larger variance in neighbour aggregation.

Remark 2: Computational time

- Even with neighbour sampling, the size of the computational graph is still exponential with respect to number of GNN layers K.
- Increasing one GNN layer would make computation H times more expensive.

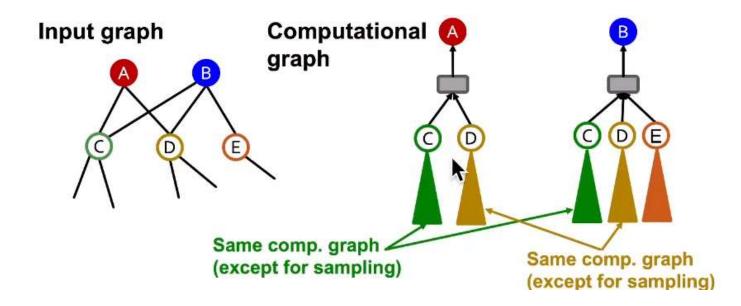
Remark 3: How to sample the nodes

- Random sampling: fast but many times not optimal!
- Random walk with restart

ISSUE WITH NEIGHBOUR SAMPLING

□ Issue with neighbour sampling:

- The size of computational graph becomes exponentially large w.r.t. the #GNN lavers.
- Computation is redundant, especially when nodes in a mini-batch share many neighbours.



/ torch_geometric.nn / conv.SAGEConv

conv.SAGEConv %

class SAGEConv (in_channels: Union[int, Tuple[int, int]], out_channels: int, aggr: Optional[Union[str, List[str], Aggregation]] = 'mean', normalize: bool = False, root_weight: bool = True, project: bool = False, bias: bool = True, **kwargs) [source]

Bases: MessagePassing

The GraphSAGE operator from the "Inductive Representation Learning on Large Graphs" paper

$$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \operatorname{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$$

Research Track Paper

Redundancy-Free Computation for Graph Neural Networks

Zhihao Jia Stanford University zhihao@cs.stanford.edu

Jiaxuan You Stanford University jiaxuan@stanford.edu Sina Lin Microsoft silin@microsoft.com

Jure Leskovec Stanford University jure@cs.stanford.edu Rex Ying Stanford University rexying@stanford.edu

Alex Aiken Stanford University aiken@cs.stanford.edu

ABSTRACT

Graph Neural Networks (GNNs) are based on repeated aggregations of information from nodes' neighbors in a graph. However, because nodes share many neighbors, a naive implementation leads to repeated and inefficient aggregations and represents significant computational overhead. Here we propose *Hierarchically Aggregated computation Graphs* (HAGs), a new GNN representation technique that explicitly avoids redundancy by managing intermediate aggregation results hierarchically and eliminates repeated computations and unnecessary data transfers in GNN training and inference. HAGs perform the same computations and give the same models/accuracy as traditional GNNs, but in a much shorter time due

1 INTRODUCTION

Graph Neural Network models (GNNs) generalize deep representation learning to graph data [3, 9, 23] and have achieved state-ofthe-art performance across a number of graph-based tasks, such as node classification, link prediction, and graph classification and recommender systems [8, 14, 24, 27].

GNNs are based on a recursive neighborhood aggregation scheme, where within a single layer of a GNN each node aggregates its neighbors' activations and uses the aggregated value to update its own activation [23]. Such updated activations are then recursively propagated multiple times (multiple layers). In the end, every node in a GNN collects information from other nodes that are in its *k*-

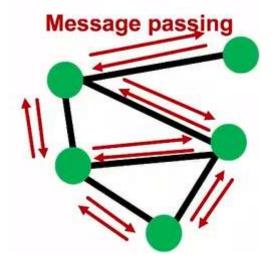
One approach to solve the redundancy problem! https://dl.acm.org/doi/pdf/10.1145/3394486.3403142

CLUSTER-GCN: REVIEW FULL-BATCH GNN

In full-batch GNN implementation, all the node embeddings are updated together using embeddings of the previous layer

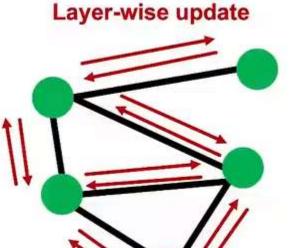
Update for all $v \in V$ $h_v^{(\ell)} = COMBINE\left(h_v^{(\ell-1)}, AGGR\left(\left\{\frac{h_u^{(\ell-1)}}{u}\right\}_{u \in N(v)}\right)\right)$

- In each layer, only 2*#(edges) messages need to be computed.
- □ For K-layer GNN, only 2K*#(edges) messages need to be computed.
- GNN's entire computation is only linear in #(edges) and #(GNN layers). Fast!



CLUSTER-GCN: INSIGHT FROM FULL-BATCH GNN

- □ The **layer-wise** node embedding update allows the re-use of embeddings from the previous layer.
- This significantly reduces the computational redundancy of neighbour sampling.
 - Of course, the layer-wise update is not feasible for a large graph due to limited GPU memory.

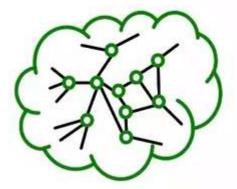


CLUSTER-GCN: SUB-GRAPH SAMPLING

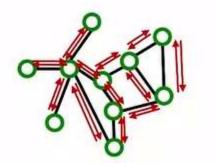
✓ Key idea: We can sample a small subgraph of the large graph and then perform the efficient layer-wise node embeddings update over the subgraph.

Large graph

Sampled subgraph (small enough to be put on a GPU)



Layer-wise node embeddings update on the GPU



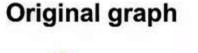
CLUSTER-GCN: SUB-GRAPH SAMPLING

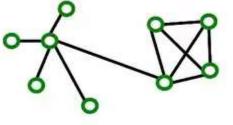
Key question: What subgraphs are good for training GNNs?

- > Recall: GNN performs node embedding by passing messages via the edges.
 - Subgraphs should retain edge connectivity structure of the original graph as much as possible.
 - This way, the GNN over the subgraph generates embeddings closer to the GNN over the original graph.

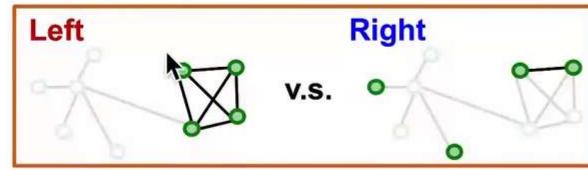
CLUSTER-GCN: SUB-GRAPH SAMPLING

Which subgraph is good for training GNN?





Subgraphs (both 4-node induced subgraph)



Left subgraph:

retains the essential community structure among the 4 nodes \rightarrow Good \checkmark

Right subgraph:

drops many connectivity patterns, even leading to isolated nodes \rightarrow Bad >

CLUSTER-GCN: EXPLOITING COMMUNITY STRUCTURE

Real-world graph exhibits community structure

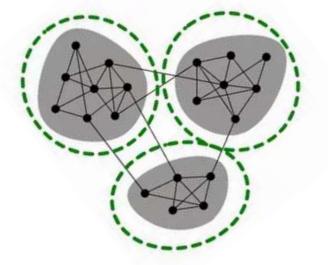
> A large graph can be decomposed into many small communities.

Key insight [Chiang et al. KDD 2019]:

Sample a community as a subgraph.

Each subgraph retains essential local connectivity pattern of the original

graph.



CLUSTER-GCN: OVERVIEW

Cluster-GCN consists of two steps: It

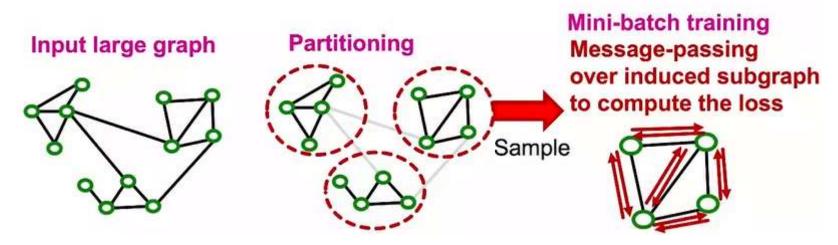
It is a Vanilla cluster-GCN

1. Pre-processing:

Given a large graph, partition it into groups of nodes (i.e., subgraphs).

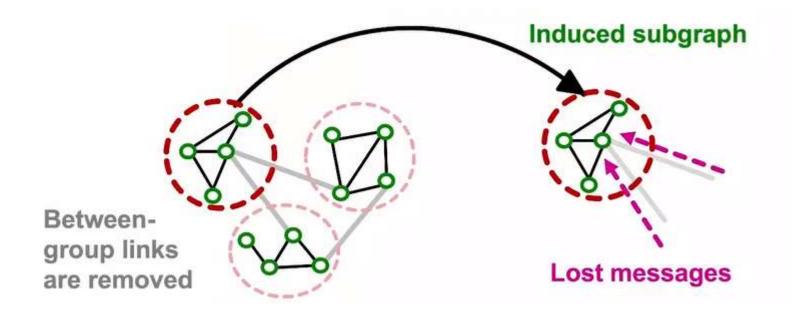
2. Mini-batch training:

Sample one node group at a time. Apply GNN's message passing over the <u>induced subgraph</u>.



CLUSTER-GCN: ISSUES(1)

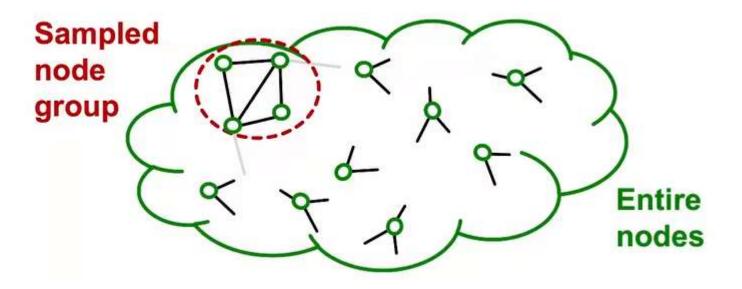
The induced subgraph removes between-group links.
 As a result, messages from other groups will be lost during message passing, which could hurt the GNN's performance.



CLUSTER-GCN: ISSUES(2)

Graph community detection algorithm puts similar nodes together in the same group.

Sampled node group tends to only cover the small-concentrated portion of the entire data.



ADVANCED CLUSTER-GCN: ISSUES(3)

Sampled nodes are not diverse enough to be represent the graph structure:

□ As a result, the gradient averaged over the sampled nodes, $\frac{1}{|V_c|} \sum_{v \in V_c} \nabla l_v(\theta)$, becomes unreliable.

- Fluctuates a lot from a node group to another.
- In other words, the gradient has high variance.

Leads to slow convergence of SGD

ADVANCED CLUSTER-GCN

✓ Solution: Aggregate multiple node groups per mini-batch.

□ Partition the graph into **relatively-small groups of nodes**.

G For each mini-batch:

- 1. Sample and aggregate multiple node groups.
- 2. Construct the induced subgraph of the aggregated node group.
- 3. The rest is the same as vanilla Cluster-GCN (compute node embeddings and the loss, update parameters)

ADVANCED CLUSTER-GCN

Why does the solution work?

□ Sampling multiple node groups

- Makes the sampled nodes more representative of the entire nodes.
- Leads to less variance in gradient estimation.

The induced subgraph over aggregated node groups

- Includes between-group edges
- Message can flow across groups.

GRAPHSAGE VS CLUSTER-GCN

□ Cluster-GCN is more computationally efficient than neighbour sampling, especially when #(GNN layers) is large.

But Cluster-GCN leads to systematically biased gradient estimates (due to missing cross-community edges)

U We start from Graph Convolutional Network (GCN) [Kipf & Welling ICLR 2017].

■ We simplify GCN by **removing the non-linear activation** from the GCN [Wu et all. ICML 2019].

- Wu et al. demonstrated that the performance on benchmark is not much lower by the simplification.
- □ Simplified GCN turns out to be extremely scalable by the model design.

SIMPLIFYING GNNS: RECALL MEAN-POOL IN GCN

□ Given: Graph G = (V, E) with input node features X_v for $v \in V$, where E includes the self-loop:

• $(v, v) \in E$ for all $v \in V$.

□ Set input node embeddings: $h_v^{(0)} = X_v \text{ for } v \in V$ □ For $k \in \{0, ..., K - 1\}$:

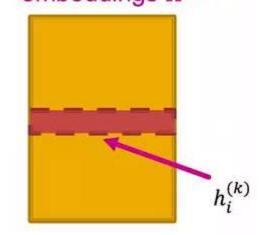
• For all $v \in V$, aggregate neighbouring information as

$$h_{v}^{(k+1)} = \operatorname{ReLU}\left(\underbrace{W_{k}}_{|N(v)|} \sum_{u \in N(v)} h_{u}^{(k)} \right)$$
Trainable weight matrices
(i.e., what we learn)
Final node embedding: $Z_{v} = h_{v}^{(k)}$

SIMPLIFYING GNNS: RECALL MATRIX FORMULATION OF GCN

GCN aggregations can be formulated as matrix vector product: Matrix of hidden embeddings H^(k)

Let $H^{(k)} = [h_1^{(k)} \dots h_{|n|}^{(k)}]^T$ \Box Let *A* be the adjacency matrix (w/ self-loop) $\Box \text{ Then: } \sum_{u \in N(v)} h_u^{(k)} = A_{v,:} \boldsymbol{H}^{(k)}$ Let **D** be diagonal matrix where $D_{v,v} = Deg(v) = |N(v)|$ \Box The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$ **Therefore**, $h_u^{(k)}$ $\boldsymbol{H}^{(l+1)} = \boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{H}^{(l)}$



SIMPLIFYING GNNS: RECALL MATRIX FORMULATION OF GCN

GCN's neighbour aggregation:

$$h_{v}^{(k+1)} = \operatorname{ReLU}\left(\boldsymbol{W}_{\boldsymbol{k}} \frac{1}{|N(v)|} \sum_{u \in N(v)} h_{u}^{(k)}\right)$$

In matrix form:

$$\boldsymbol{H}^{(k+1)} = \operatorname{ReLU}\left(\boldsymbol{\widetilde{A}}\boldsymbol{H}^{(k)}\boldsymbol{W}_{\boldsymbol{k}}^{\mathrm{T}}\right)$$

where $\tilde{A} = D^{-1}A$

Note: The original GCN uses re-normalized version: $\tilde{A} = D^{-1/2}A D^{-1/2}$

• Empirically, this version of \tilde{A} often gives better performance than $D^{-1}A$

Simplify GCN by removing ReLU non-linearity:

The final node embedding matrix is given as $\boldsymbol{H}^{(K)} = \widetilde{\boldsymbol{A}}_{\boldsymbol{A}} \boldsymbol{H}^{(K-1)}_{\boldsymbol{A}} \boldsymbol{W}_{K-1}^{\mathrm{T}}$ $\widetilde{\boldsymbol{A}}\boldsymbol{H}^{(K-2)}\boldsymbol{W}_{\boldsymbol{K}-2}^{T}\boldsymbol{W}_{\boldsymbol{K}-2}^{T}$ $= \widetilde{A}($ $H^{(0)}$ W_0^{T}) \cdots W_{K-2}^{T} W_{K-1}^{T} $\cdots = A(A(\cdots$ $= \widetilde{A}^K X$ **Composition of linear** transformation is still linear! $= \widetilde{A}^K X W$ where $W \equiv W_{K-1} \cdots W_0$

$$\boldsymbol{H}^{(k+1)} = \widetilde{\boldsymbol{A}} \boldsymbol{H}^{(k)} \boldsymbol{W}_{\boldsymbol{k}}^{\mathrm{T}}$$

Removing ReLU significantly simplifies GCN!

$$H^{(K)} = \tilde{A}^K X W^T$$

□ Notice $\widetilde{A}^{K}X$ does not contain any learnable parameters; hence, it can be pre-computed.

- Efficiently computable as a sequence of sparse-matrix vector products:
- Do $X \leftarrow \tilde{A}X$ for K times.

□ Let $\widetilde{X} = \widetilde{A}^{K}X$ be pre-computed matrix. Simplified GCN's final embedding is $H^{(K)} = \widetilde{X}W^{T}$

It's just a linear transformation of pre-computed matrix!
 Back to the node embedding form:

$$h_{v}^{(K)} = \boldsymbol{W} \boldsymbol{\widetilde{X}_{v}}$$

Pre-computed feature vector for node v

Embedding of node v only depends on its own (pre-processed) feature!

SIMPLIFYING GNNS

- \Box Once \tilde{X} is pre-computed, embeddings of M nodes can be generated in time linear in M:
 - Given M nodes $\{v_1, v_2, \dots, v_M\}$, their embeddings are

$$h_{v_{1}}^{(K)} = W\widetilde{X}_{v_{1}},$$

$$h_{v_{2}}^{(K)} = W\widetilde{X}_{v_{2}},$$

$$\dots$$

$$h_{v_{M}}^{(K)} = W\widetilde{X}_{v_{M}}.$$

SIMPLIFYING GNNS

In summary, simplified GCN consists of two steps:

Pre-processing step:

Pre-compute $\widetilde{X} = \widetilde{A}^K X$. Can be done on CPU.

Mini-batch training step:

- For each mini-batch, randomly-sample M nodes {v₁, v₂, ..., v_M}.
- Compute their embeddings by

•
$$h_{v_1}^{(K)} = W \widetilde{X}_{v_1}, h_{v_2}^{(K)} = W \widetilde{X}_{v_2}, ..., h_{v_M}^{(K)} = W \widetilde{X}_{v_M}$$

- Use the embeddings to make prediction and compute the loss averaged over the M data points.
- Perform SGD parameter update.

COMPARISON WITH OTHER MODELS

Compared to neighbour sampling:

Simplified GCN generates node embeddings much more efficiently (no need to construct the giant computational graph for each node).

Compared to Cluster-GCN:

- Mini-batch nodes of simplified GCN can be sampled completely randomly from the entire nodes (no need to sample from multiple groups as Cluster-GCN does)
- Leads to lower SGD variance during training.

But the model is much less expressive.

COMPARISON WITH OTHER MODELS

Compared to the original GN models, simplified GCN's expressive power is limited due to the lack of non-linearity in generating node embeddings. COMPARISON WITH OTHER MODELS

Compared to the original GN models, simplified GCN's expressive power is limited due to the lack of non-linearity in generating node embeddings.

Why the performance is good? https://youtu.be/iTRW9Gh7yKI?list=PLoROMvodv4rPLKxIpqhjhPgd Qy7imNkDn&t=880



Sinconv	Powerful are Graph Neural Networks?" paper
GINEConv	The modified GINCONV operator from the "Strategies for Pre-training Graph Neural Networks" paper
ARMAConv	The ARMA graph convolutional operator from the "Graph Neural Networks with Convolutional ARMA Filters" paper
SGConv	The simple graph convolutional operator from the "Simplifying Graph Convolutional Networks" paper
SSGConv	The simple spectral graph convolutional operator from the "Simple Spectral Graph Convolution" paper
APPNP	The approximate personalized propagation of neural predictions layer from the "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" paper
	The graph neural network operator from the

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

conv.SGConv

class SGConv (in_channels: int, out_channels: int, K: int = 1, cached: bool =
False, add_self_loops: bool = True, bias: bool = True, **kwargs) [source]

Bases: MessagePassing

The simple graph convolutional operator from the "Simplifying Graph Convolutional Networks" paper

$$\mathbf{X}' = \left(\mathbf{\hat{D}}^{-1/2}\mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2}\right)^K \mathbf{X}\mathbf{\Theta},$$

where $\hat{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ denotes the adjacency matrix with inserted self-loops and $\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}$ its diagonal degree matrix. The adjacency matrix can include other values than 1 representing edge weights via the optional edge_weight tensor.

EXAMPLE

```
class Net(torch.nn.Module):
   def __init__(self):
       super().__init__()
       self.conv1 = SGConv(dataset.num_features, dataset.num_classes, K=2,
                            cached=True)
   def forward(self):
       x, edge_index = data.x, data.edge_index
       x = self.conv1(x, edge_index)
       return F.log_softmax(x, dim=1)
```

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sgc.py

SCALING UP GNNS VIA REMOTE BACKENDS

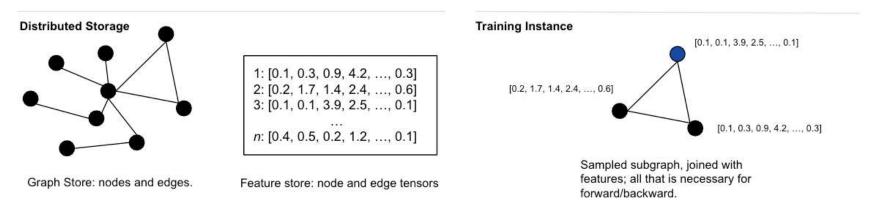
Using key-value and graph database:

> Documentation:

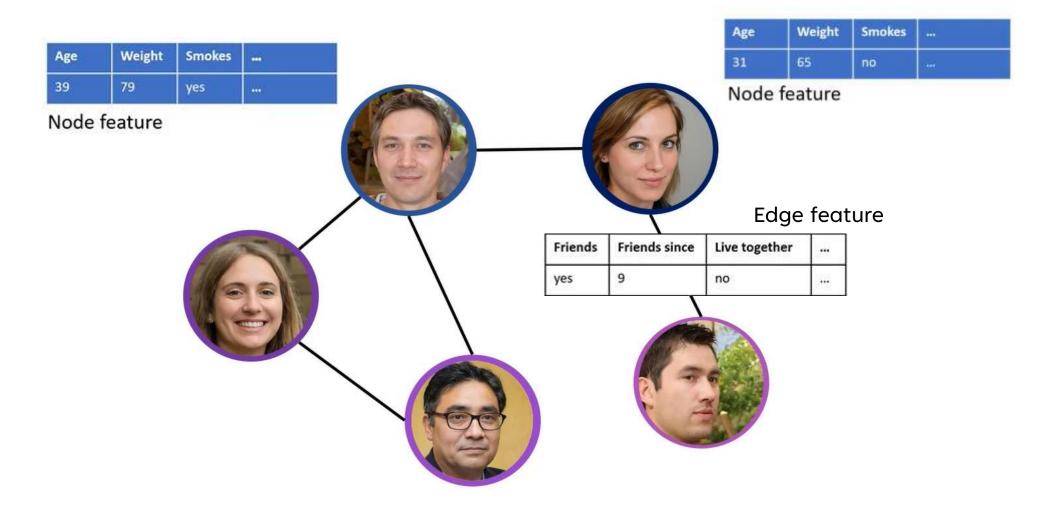
https://pytorch-geometric.readthedocs.io/en/latest/advanced/remote.html

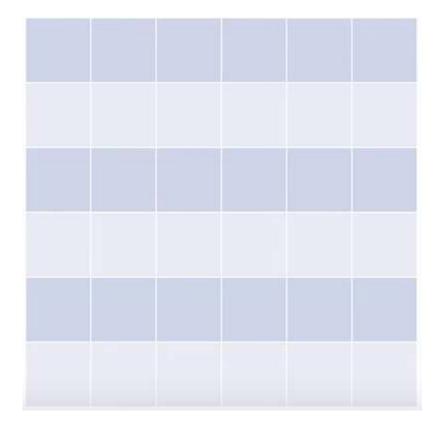
> Example:

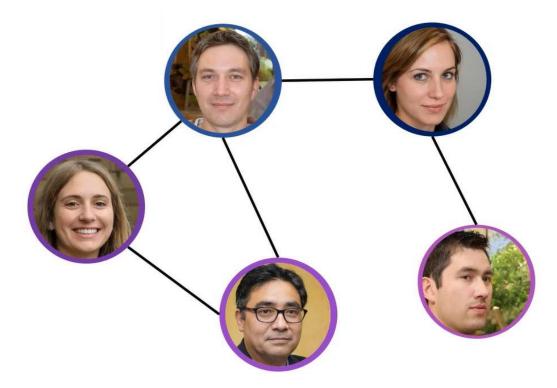
https://github.com/pyg-team/pytorch_geometric/tree/master/examples/kuzu/papers_100M

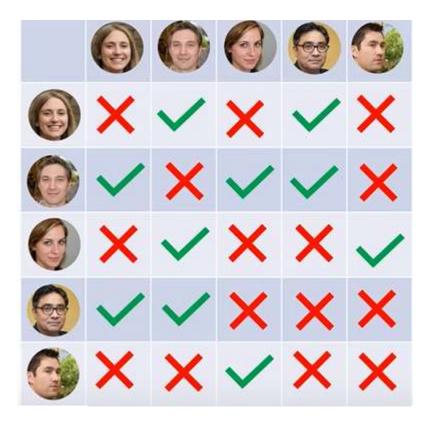


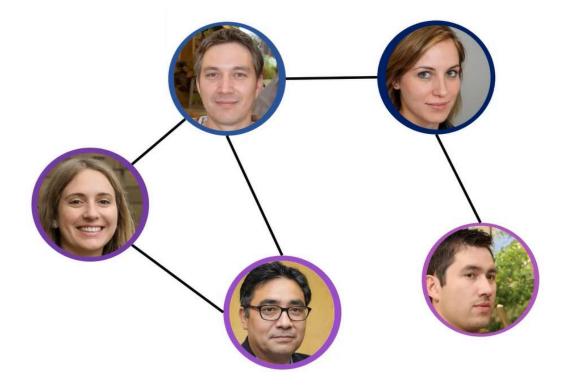
EDGE FEATURES

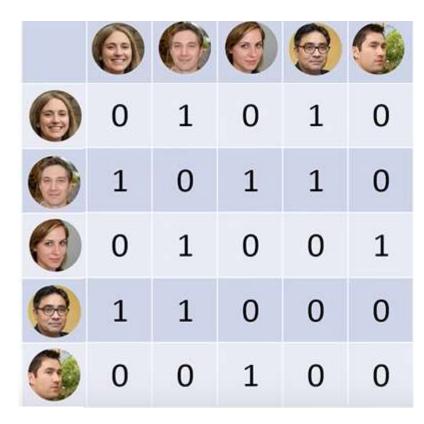


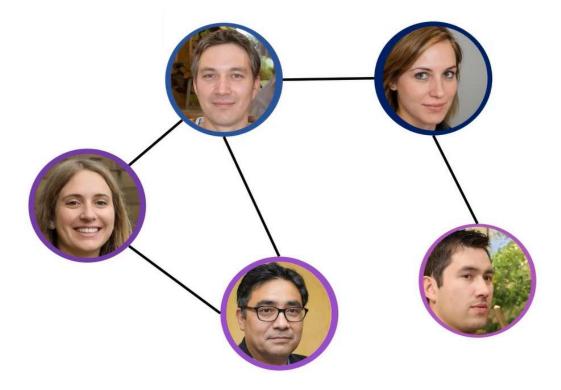






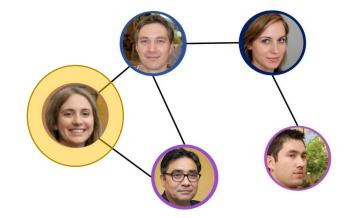






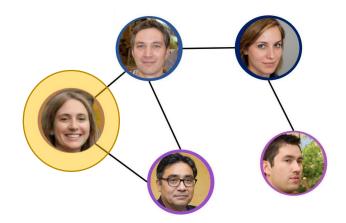
THE GENERAL PROCESS IN GNNS

TRANSFORM

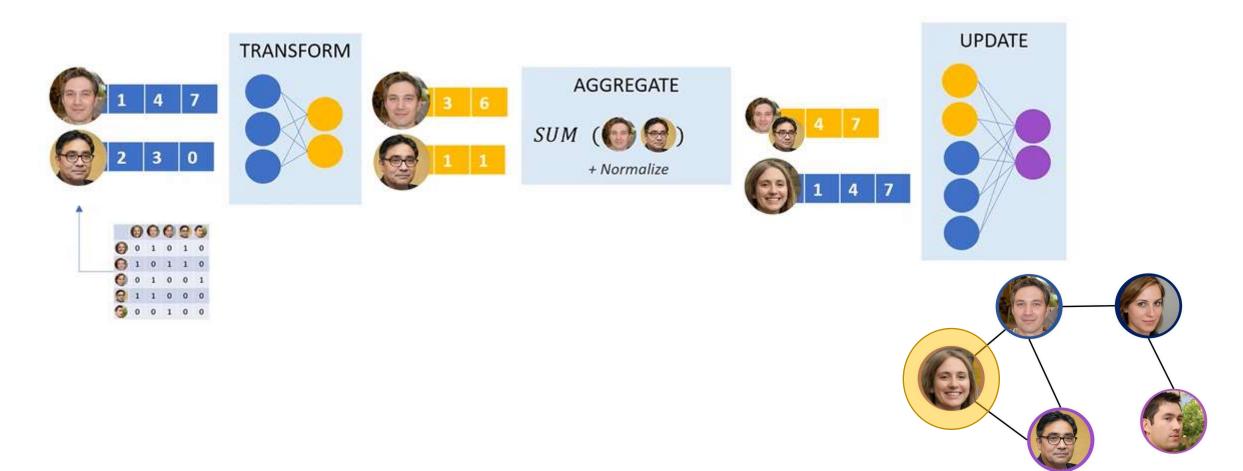


THE GENERAL PROCESS IN GNNS

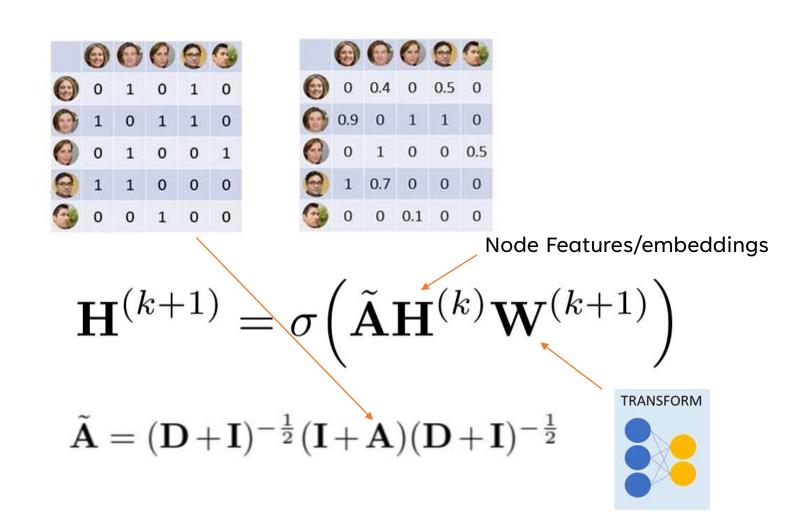
I </tr

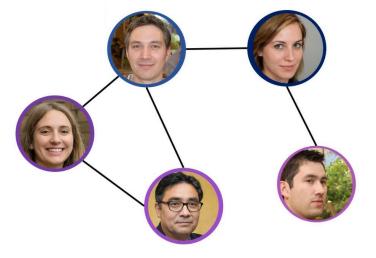


THE GENERAL PROCESS IN GNNS

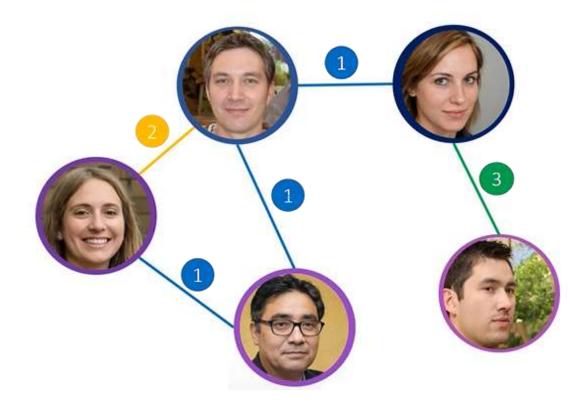


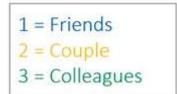
USING EDGE WEIGHT



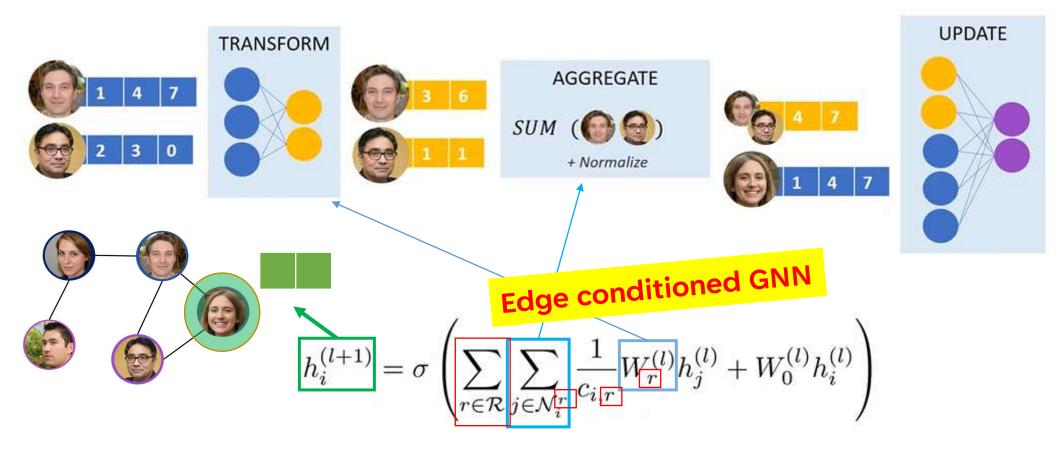


DIFFERENT EDGE TYPES





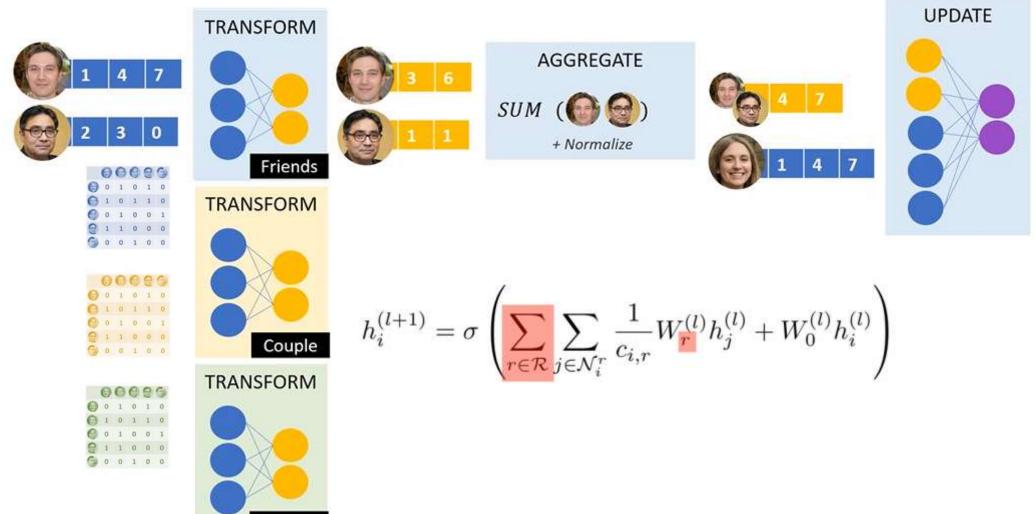
DIFFERENT EDGE TYPES - RELATIONAL GCN



Relational GCN Modelling Relational Data with Graph Convolutional Networks, Schlichtkrull et al.

Class.vision

DIFFERENT EDGE TYPES - RELATIONAL GCN



Class.vision

Colleag

APPNP	The approximate personalized propagation of neural predictions layer from the "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" paper	
MFConv	The graph neural network operator from the "Convolutional Networks on Graphs for Learning Molecular Fingerprints" paper	
RGCNConv	The relational graph convolutional operator from the "Modeling Relational Data with Graph Convolutional Networks" paper	
FastRGCNConv	See RGCNConv.	
CuGraphRGCNConv	The relational graph convolutional operator from the "Modeling Relational Data with Graph Convolutional Networks" paper.	
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html		

conv.RGCNConv s

class RGCNConv (in_channels: Union[int, Tuple[int, int]], out_channels: int, num_relations: int, num_bases: Optional[int] = None, num_blocks: Optional[int] = None, aggr: str = 'mean', root_weight: bool = True, is_sorted: bool = False, bias: bool = True, **kwargs) [source]

Bases: MessagePassing

The relational graph convolutional operator from the "Modeling Relational Data with Graph Convolutional Networks" paper

$$\mathbf{x}_i' = \mathbf{\Theta}_{ ext{root}} \cdot \mathbf{x}_i + \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_r(i)} rac{1}{|\mathcal{N}_r(i)|} \mathbf{\Theta}_r \cdot \mathbf{x}_j,$$

where \mathcal{R} denotes the set of relations, *i.e.* edge types. Edge type needs to be a one-dimensional torch.long tensor which stores a relation identifier $\in \{0, \ldots, |\mathcal{R}| - 1\}$ for each edge.

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGCNConv.htm l#torch_geometric.nn.conv.RGCNConv

conv.FastRGCNConv %

class FastRGCNConv (in_channels: Union[int, Tuple[int, int]], out_channels: int, num_relations: int, num_bases: Optional[int] = None, num_blocks: Optional[int] = None, aggr: str = 'mean', root_weight: bool = True, is_sorted: bool = False, bias: bool = True, "*kwargs) [source]

Bases: RGCNConv

See RGCNConv .

forward (x: Union[Tensor, None, Tuple[Optional[Tensor], Tensor]], edge_index: Union[Tensor, SparseTensor], edge_type: Optional[Tensor] = None) [source]

Runs the forward pass of the module.

PARAMETERS

 x (torch.Tensor or tuple, optional) - The input node features. Can be either a [num_nodes, in_channels] node feature matrix, or an optional one-dimensional node index tensor (in which case input features

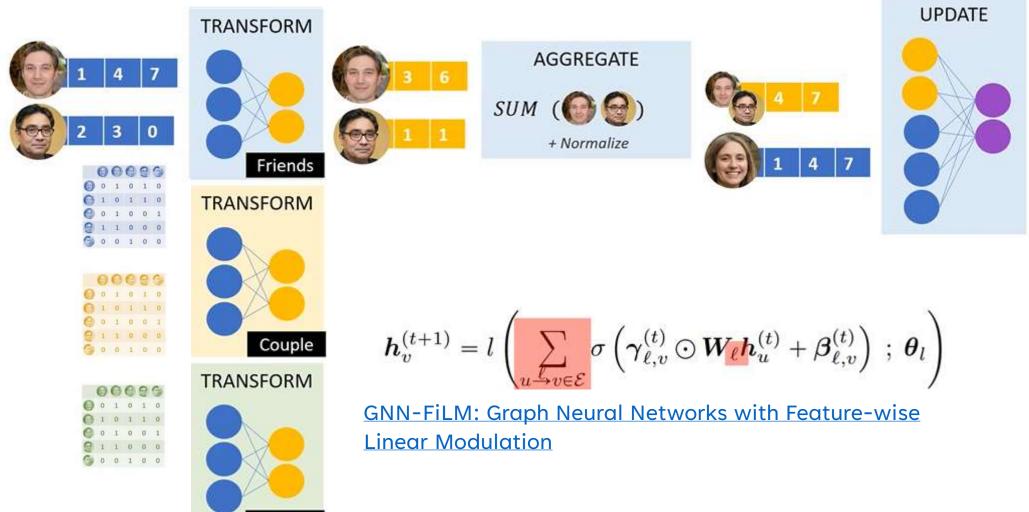
https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.FastRGCNCo nv.html#torch_geometric.nn.conv.FastRGCNConv

Example: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/rgcn.py

DIFFERENT EDGE TYPES - GNN FILM

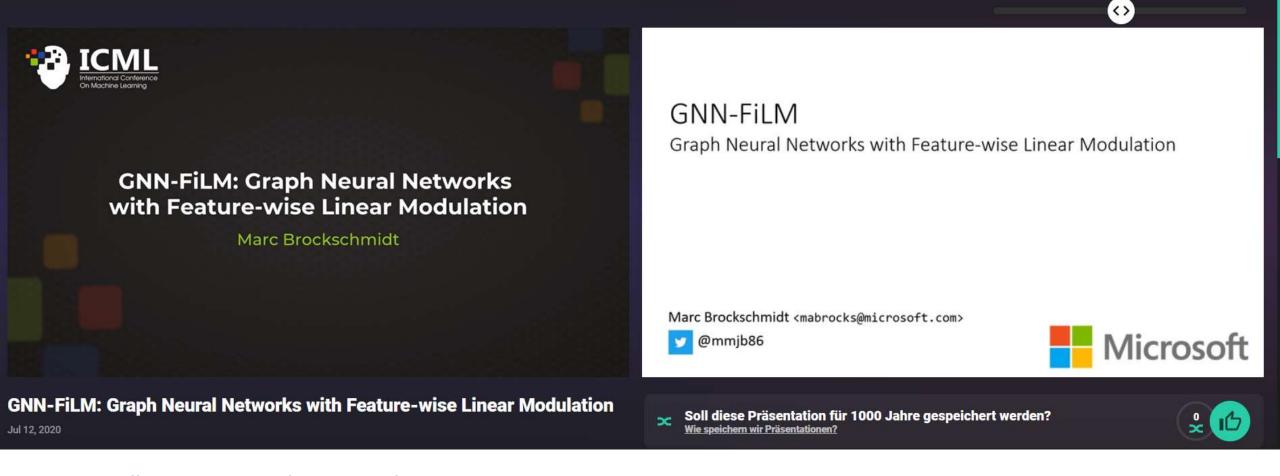
Colleag



Class.vision

Graph Neural Network

Suche



Q

https://slideslive.com/38927627/gnnfilm-graph-neural-networks-with-featurewise-linearmodulation?ref=recommended

Class.vision

а

WLConv	The Weisfeiler Lehman operator from the "A Reduction of a Graph to a Canonical Form and an Algebra Arising During this Reduction" paper, which iteratively refines node colorings:	
WLConvContinuous	The Weisfeiler Lehman operator from the "Wasserstein Weisfeiler-Lehman Graph Kernels" paper.	
FilMConv	The FiLM graph convolutional operator from the "GNN- FiLM: Graph Neural Networks with Feature-wise Linear Modulation" paper	
SuperGATConv	The self-supervised graph attentional operator from the "How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision" paper	
FAConv	The Frequency Adaptive Graph Convolution operator from the "Beyond Low-Frequency Information in Graph Convolutional Networks" paper	
https://pytorch-geometric.readthedo	https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html	

Class.vision

conv.FiLMConv %

class FiLMConv (in_channels: Union[int, Tuple[int, int]], out_channels: int, num_relations: int = 1, nn: Optional[Callable] = None, act: Optional[Callable] = ReLU(), aggr: str = 'mean', **kwargs) [source]

Bases: MessagePassing

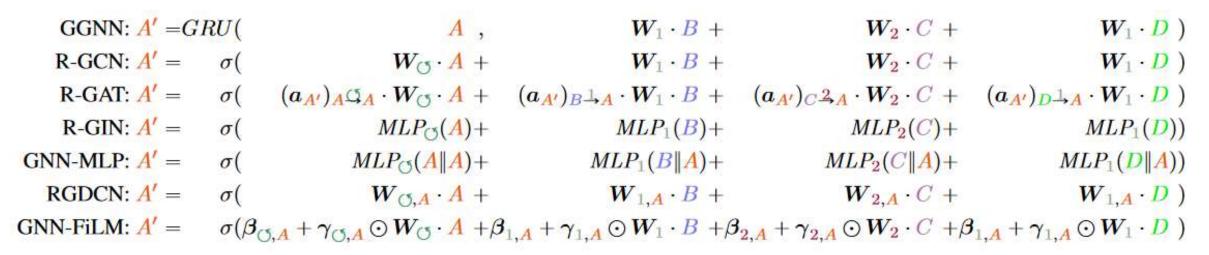
The FiLM graph convolutional operator from the "GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation" paper

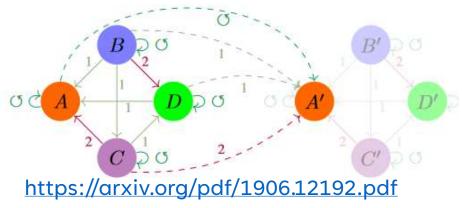
$$\mathbf{x}_i' = \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}(i)} \sigma\left(oldsymbol{\gamma}_{r,i} \odot \mathbf{W}_r \mathbf{x}_j + oldsymbol{eta}_{r,i}
ight)$$

where $\beta_{r,i}$, $\gamma_{r,i} = g(\mathbf{x}_i)$ with g being a single linear layer by default. Selfloops are automatically added to the input graph and represented as its own relation type.

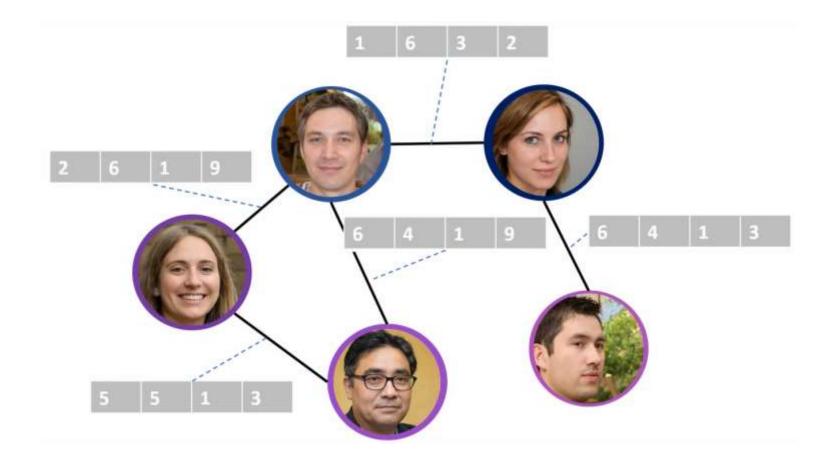
geometric.readthedocs.io/en/latest/generated/torch_geome tric.nn.conv.FiLMConv.html#torch_geometric.nn.conv.FiLMC nttps://pytorchonv

DIFFERENT EDGE TYPES- OTHER VARIANTS

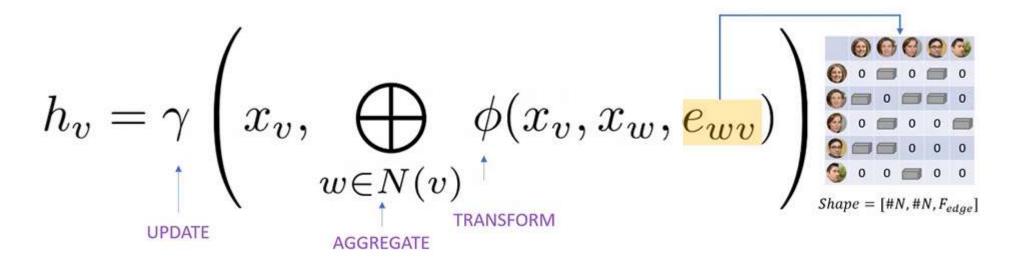


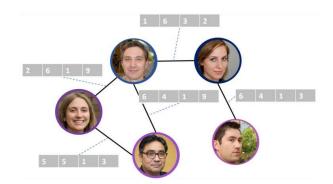


MULTIDIMENSIONAL EDGE FEATURES



MULTIDIMENSIONAL EDGE FEATURES



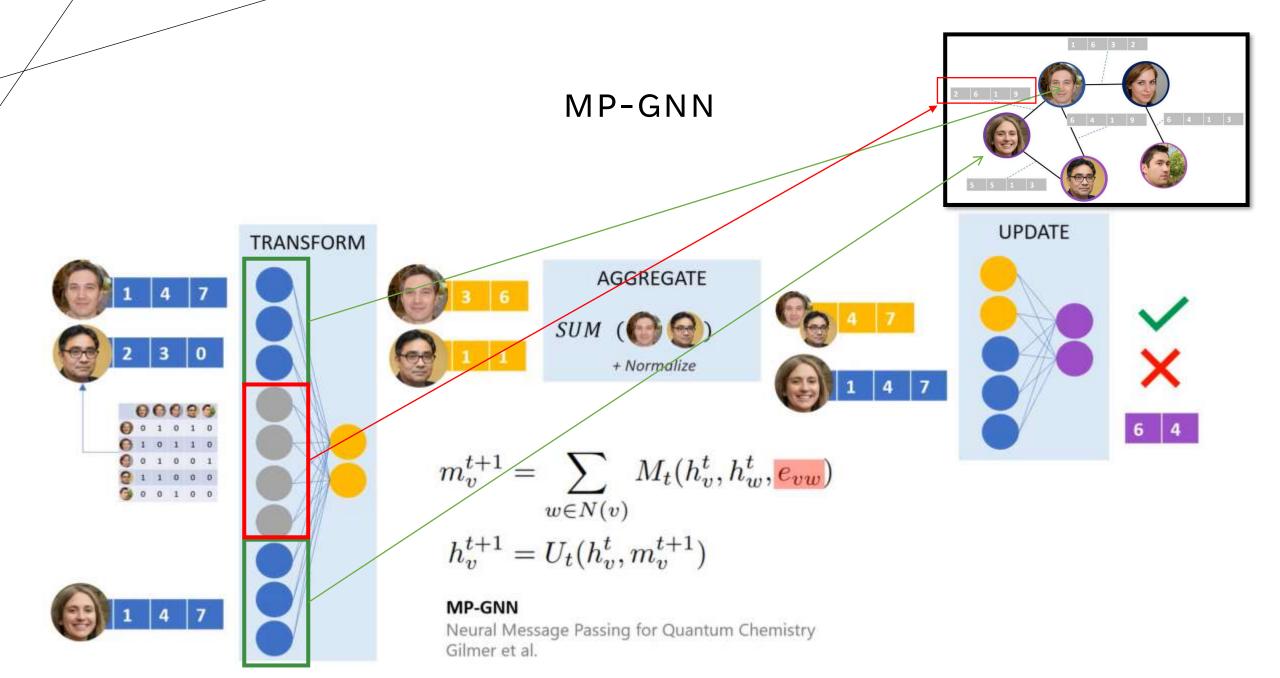


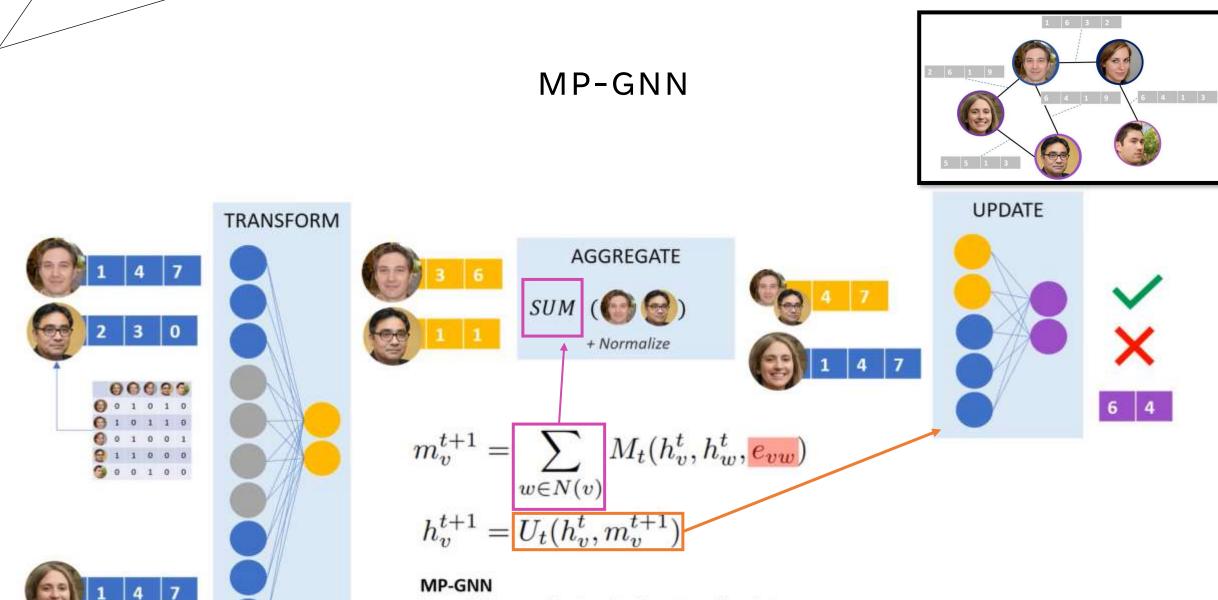
MULTIDIMENSIONAL EDGE FEATURES: MP-GNN

$$m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$$
$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

MP-GNN

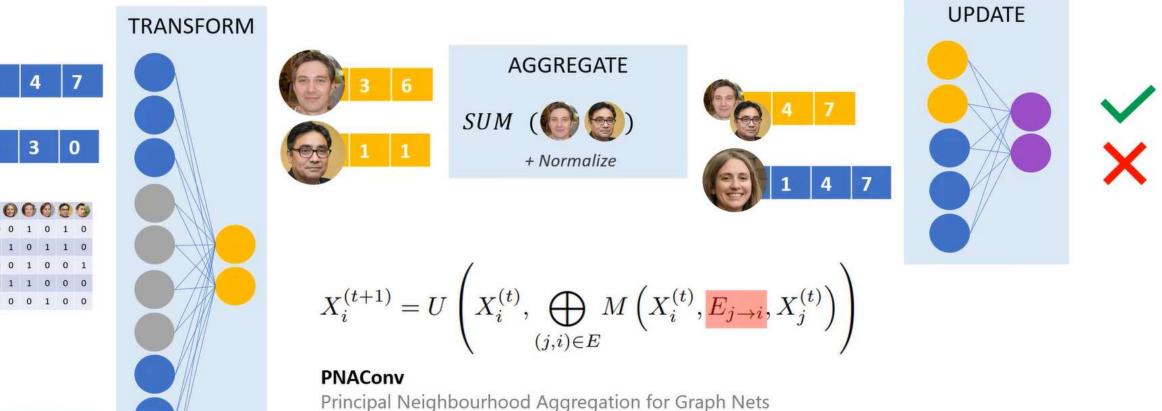
Neural Message Passing for Quantum Chemistry Gilmer et al.





Neural Message Passing for Quantum Chemistry Gilmer et al.

MULTIDIMENSIONAL EDGE FEATURES: PNACONV



10

Principal Neighbourhood Aggregation for Corso et al.

Class.vision

MULTIDIMENSIONAL EDGE FEATURES OTHER EXAMPLES

Graph Convolutional Networks for Graphs with Multi-Dimensionally Weighted Edges

> Zhengdar Chen July 20, 2020

1 Introduction

Using the small interesting (2004a) are address to exploit indetword interchange in data. But our forms of purples: A graph trapeable materials of mades solutions requested agards, and agard addings, and addings, and adding are server relations to the material in a converting trapedition for the server is a server relation to the three models, and addings are also a converting and adding and adding the server is a server three and a converting transition and an adding the servers. Server addings are provided by exploring adding match is adding and adding to a server three product properties of the works, the sonatement is properties and the antime graph.

And against to interediate a question on going space, which is indicate the interesting from data and theread Neurodia (2005) in these of the conditions or perturbation and the start Neurodia (2005) in these of the conditions or perturbation before the start of the before the start of the conditions of the start conditions of the start depines of the start of the sta

summerical to each other on multiple indicates (Millachical et al. 2005). The direction of sensers bills remains interesting is have to exploit using housens put from graph considered a general insange possing or purpos, the framework difficult fairworks (MFNIs) indicat allocat the incorporations of edge instance rest model (G) instabilities, sum of the polaritation events variable, and in the more sensitivat the a

DeeperGCN: All You Need to Train Deeper GCNs

Abstract

In the Constraints of Physical (2017), have been been equivalent to the second second

1 Introduction

The next of automatics (in the database tracks in early, then tensors are in the target of the database transmission of the second of the target of target o

SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

Mathian Pay", Jan Eric Lenoser, "Funk Wricher, Heineich Mähr Depatinent of Computer Graphics TV Dostmand Enformity Internet, eine Start Starting, ein

* Boll asher confident again to dry and.

Abstract

2

2

2

We prevent follow have of canonicircumd branch Networks (higherd SNN), a total or of page and interview program also methods and gammeric spans $\mathbb{Z}_{2,2}$, respective analysis much series of the set of the set of the set of the set of the sector interview of the set of the set of the set of the set of sector 2 and the set of the set of the set of the set of the sector 2 and the set of the set of the set of the set of the sector 2 and the set of the set of the set of the set of the sector 2 and the set of the R within the set of the R within the set of the set of

or design and target targets, and go only the generative structure an impart, second of humal right of human draw discuss. For evaluations, or apply our method are surfar from the 1454 of impart and characteristic, draw or entropy the second graph scale classifications, and also draw is negregibleness and graph scale classifications, and also draw is negregibleness.

or per aux different approaches table here specific de cardy percent and hereing downship properties the downso independence. Our source code is conclude on Gardyal'.

Office and a second secon

50

Published as a conference paper at ICLR 2020

STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS

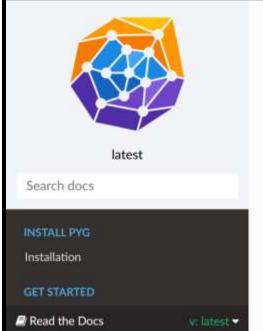
Worksen Her, "Devices Lass", Joseph Granner, "Harinka Zheile", Propri Long, "Ality Fording: Nature, "Character, "Georgeneering, Bachael Discreting, "Opponness of Character and Bachevical Engineering, The University of Isas, "Opponness of Character and Bachevical Engineering, The University of Isas, "Opponness of Engineering, and States, Barried Discreting, The University of Character, Engineering, and Anny, Service and Anny Constant, and programmer and the Anny Service and Anny Constant, and programmer and the Anny Service and Anny Constant, and programmer and Anny Service Anny, Service and Anny Service and Anny Service and Anny Service Anny, Service and Anny Service and Anny Service Anny, Service Anny, Service and Anny Service and Anny Service Anny, Service

ABSTRACT

Mean preparations of matchine harving require a -model to match assuming prediction on site complex-late are discributionally alteriation: proor invariant, market with the standard parallel balance on a same during names, in a distuist programment on the entropy is programment as model or neutral using where the site is related as a discretise parallel balance on the other investigation of the site of the time many balangean guide and site of the site of t

1. 11------

USING EDGE FEATURES IN PYTORCH GEOMETRIC



/ torch_geometric.nn

torch_geometric.nn

Contents

- Convolutional Layers
- Aggregation Operators
- Normalization Layers
- Pooling Layers
- Unpooling Layers
- Models
- KGE Models
- Encodings
- Functional

PyTorch geometric

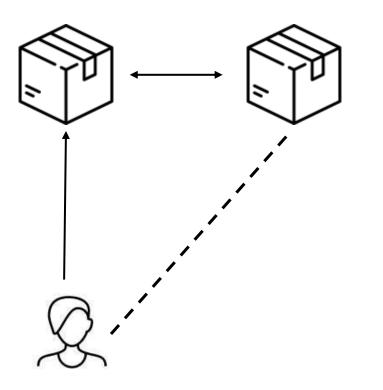
USING EDGE FEATURES IN PYTORCH GEOMETRIC

➢ edge_weight → GNN Layer can use weight values on the adjacency matrix
 ➢ edge_type → GNN Layer can use different edge types / relations
 ➢ edge_attr → GNN Layer can use edge features

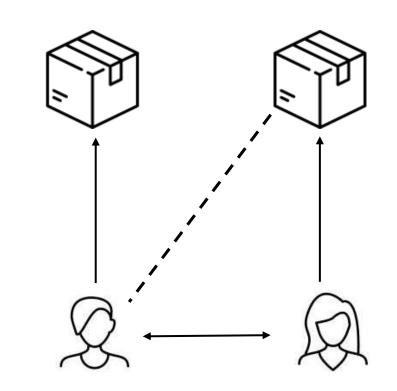
forward (x: Union[Tensor, None, Tuple[Optional[Tensor], Tensor]], edge_index: Union[Tensor, SparseTensor], edge_type: Optional[Tensor] = None) [source] %

LINK PREDICTION AND GRAPH AUTOENCODER

WHAT IS A RECOMMENDER SYSTEM?

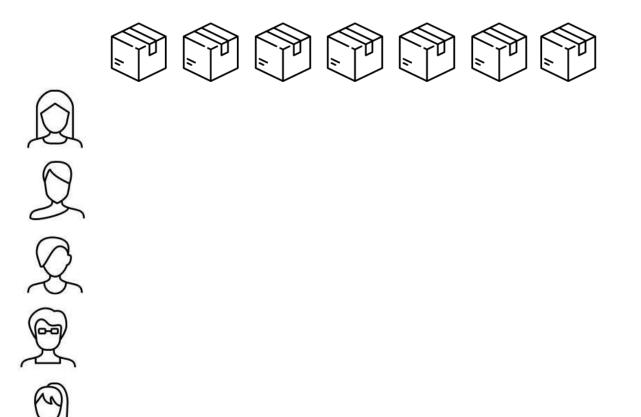


Content-based filtering

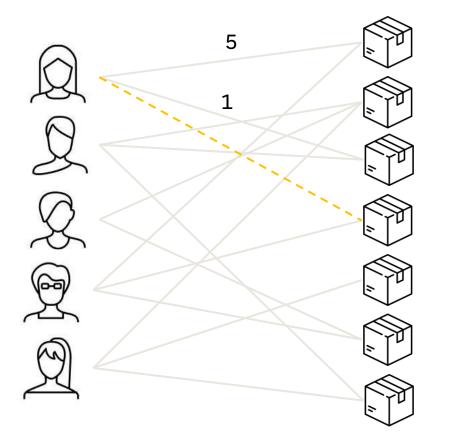


Collaborative filtering

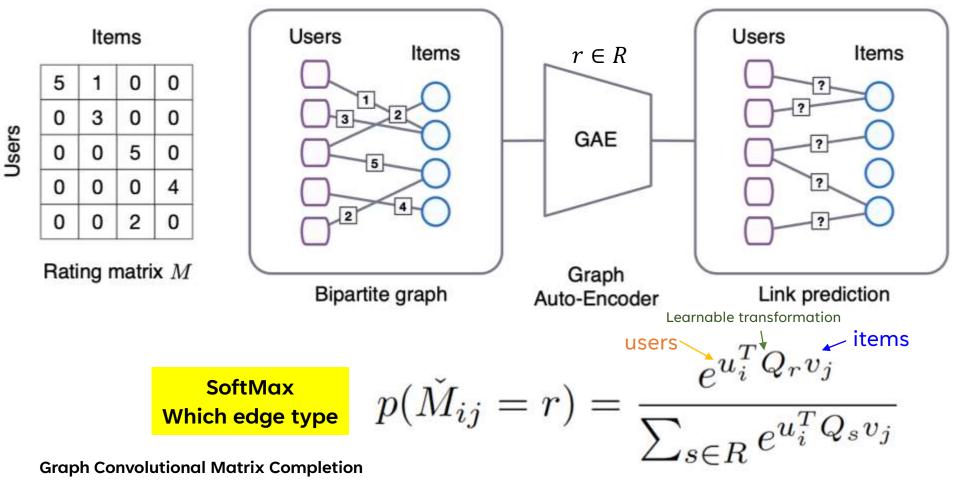




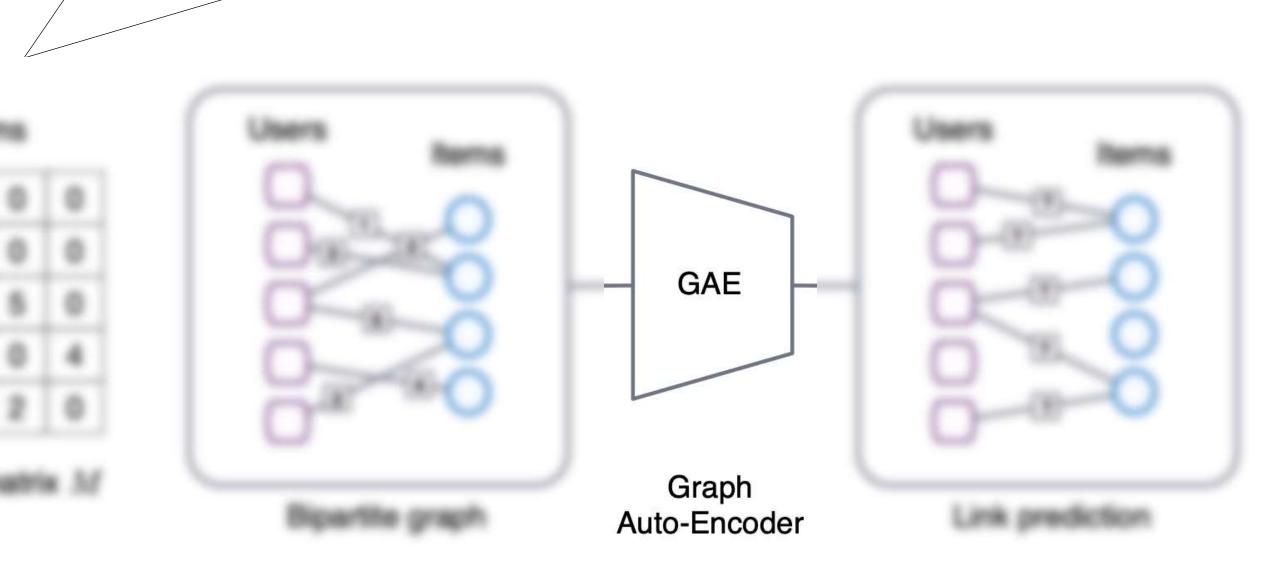
BIPARTITE GRAPH



GRAPH CONVOLUTIONAL MATRIX COMPLETION



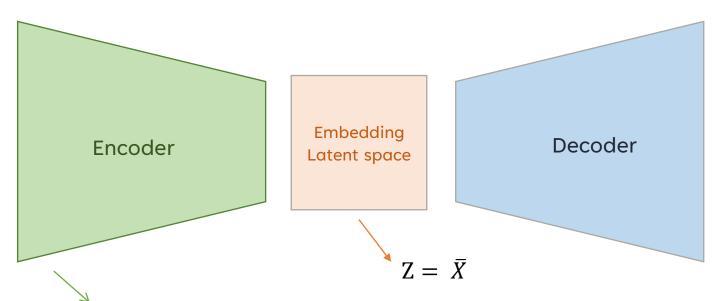
Rianne van den Berg, Thomas N. Kipf, Max Welling 2017



Graph Convolutional Matrix Completion

Rianne van den Berg, Thomas N. Kipf, Max Welling 2017

GRAPH AUTOENCODERS (GAE)



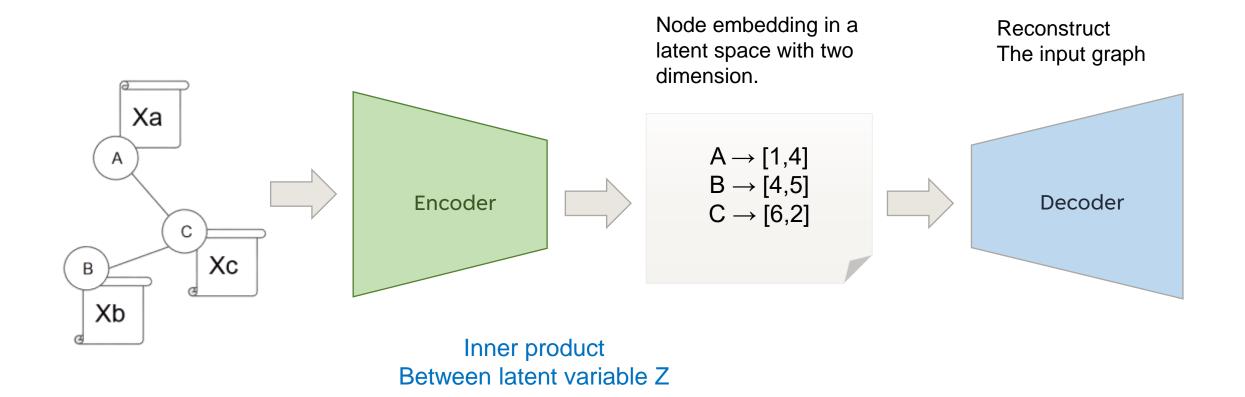
A graph convolutional Neural Network

produces a low dimensional embedding representation

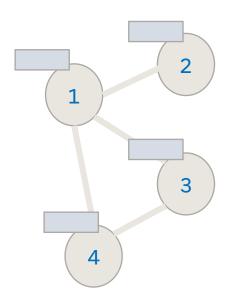
$$\overline{X} = GCN(A, X) = ReLU(\widetilde{A}XW_0)$$

With $\widetilde{A} = D^{-1/2} A D^{-1/2}$

GRAPH AUTOENCODERS (GAE)



WHY INNER PRODUCT?



1	2.4	8.1	0.3	1	2	3	4
2	0.7	0.6	0.2	2.4	0.7	0.3	2.1
3	0.3	9.2	1.2	8.1	0.6	9.2	1.8
4	2.1	1.8	0.8	0.3	0.2	1.2	0.8
		Z				Z^T	

 $\hat{\mathbf{A}} = \sigma(\mathbf{Z}\mathbf{Z}^{\top}), \text{ with } \mathbf{Z} = \operatorname{GCN}(\mathbf{X}, \mathbf{A})$

Variational Graph Auto-Encoders, 2016 https://arxiv.org/abs/1611.07308 WHY INNER PRODUCT?

3

0.3

9.2

1.2

 Z^T

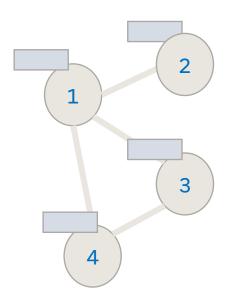
4

2.1

1.8

0.8

 3×4



1	2.4	8.1	0.3		1	2	
2	0.7	0.6	0.2		2.4	0.7	
3	0.3	9.2	1.2		8.1	0.6	
4	2.1	1.8	0.8		0.3	0.2	
	Z 4 × 3						

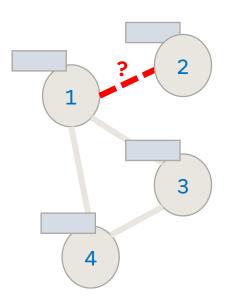
	1	2	З	4
1	۰.	۰.	۰.	·.
2	?.	?.	? .	·.
3	?	?	?.	?
4	?	?	?	?

Adjacency

 4×4

 $\hat{\mathbf{A}} = \sigma(\mathbf{Z}\mathbf{Z}^{\top}), \text{ with } \mathbf{Z} = \operatorname{GCN}(\mathbf{X}, \mathbf{A})$

Variational Graph Auto-Encoders, 2016 https://arxiv.org/abs/1611.07308 WHY INNER PRODUCT?



							-	
1	2.4	8.1	0.3		1	2	3	4
2	0.7	0.6	0.2		2.4	0.7	0.3	2.1
3	0.3	9.2	1.2		8.1	0.6	9.2	1.8
4	2.1	1.8	0.8		0.3	0.2	1.2	0.8
		Z 4:	× 3	• !			Z^T 3	$\times 4$

	1	2	З	4
1	?	?	?	?
2	••	?	·.	?
3	?	?	?	?
4	?.	? .	?.	?

1.8

0.8

Adjacency

 4×4

 $\hat{\mathbf{A}} = \sigma \left(\mathbf{Z} \mathbf{Z}^{\top} \right)$, with $\mathbf{Z} = \mathrm{GCN}(\mathbf{X}, \mathbf{A})$

Variational Graph Auto-Encoders, 2016 https://arxiv.org/abs/1611.07308

Graph Neural Network

HETEROGENEOUS & KNOWLEDGE GRAPH EMBEDDING

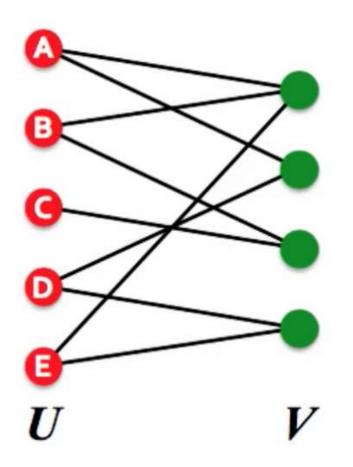
HETEROGENEOUS GRAPHS

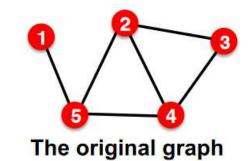
A heterogeneous graph is defined as

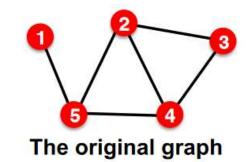
$$G = (V, E, R, T)$$

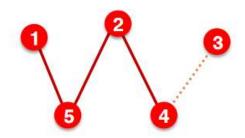
- Nodes with node types $v_i \in V$
- Edges with relation types $(v_i, r, v_j) \in E$
- Node type $T(v_i)$
- Relation type $r \in R$

BIPARTITE GRAPH



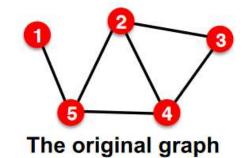


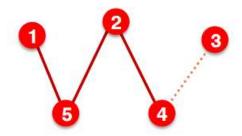




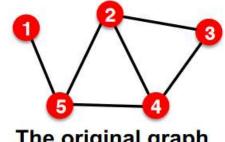
(1) At training time: Use training message edges to predict training supervision edges

3





(1) At training time: Use training message edges to predict training supervision edges (2) At validation time: Use training message edges & training supervision edges to predict validation edges

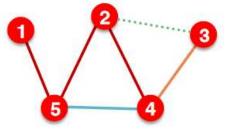


The original graph

(1) At training time: Use training message edges to predict training supervision edges

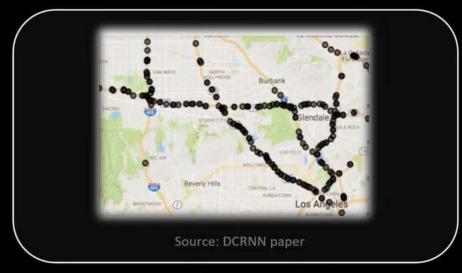
3 5 4

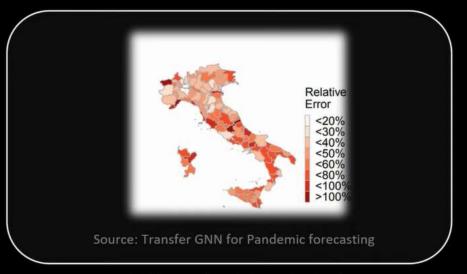
(2) At validation time: Use training message edges & training supervision edges to predict validation edges



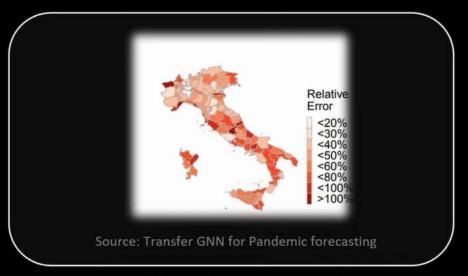
(3) At test time: Use training message edges & training supervision edges & validation edges to predict test edges

SPATIO-TEMPORAL GRAPH NEURAL NETWORKS

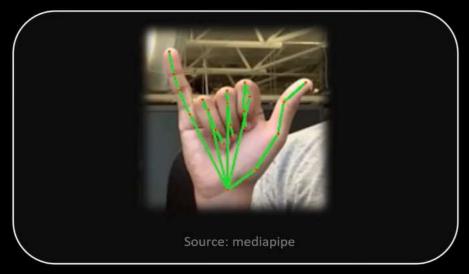




Epidemics (Covid Predictions)



Epidemics (Covid Predictions)

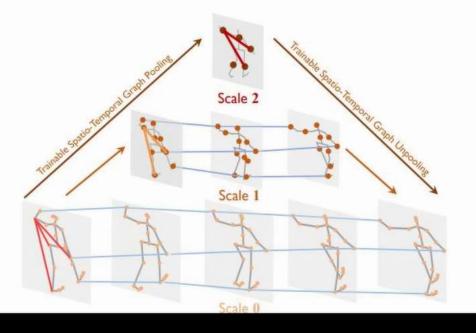


Motion Classification

Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based Motion Prediction

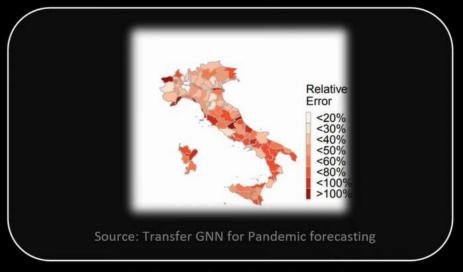
Maosen Li, Student Member, IEEE, Siheng Chen, Member, IEEE, Yangheng Zhao, Ya Zhang, Member, IEEE, Yanfeng Wang, and Qi Tian, Fellow, IEEE

Abstract—We propose a multiscale spatio-temporal graph neural network (MST-GNN) to predict the future 3D skeletonbased human poses in an action-category-agnostic manner. The core of MST-GNN is a multiscale spatio-temporal graph that explicitly models the relations in motions at various spatial and temporal scales. Different from many previous hierarchical structures, our multiscale spatio-temporal graph is built in a *dataadaptive fashion*, which captures nonphysical, yet motion-based relations. The key module of MST-GNN is a multiscale spatiotemporal graph computational unit (MST-GCU) based on the trainable graph structure. MST-GCU embeds underlying features at individual scales and then fuses features across scales to obtain a comprehensive representation. The overall architecture of MST-GNN follows an encoder-decoder framework, where the encoder consists of a sequence of MST-GCUs to learn the spatial and





Motion Classification



Epidemics (Covid Predictions)

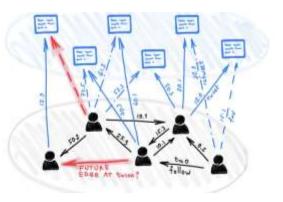
Power Systems Forecasting

TIME VARYING GRAPH

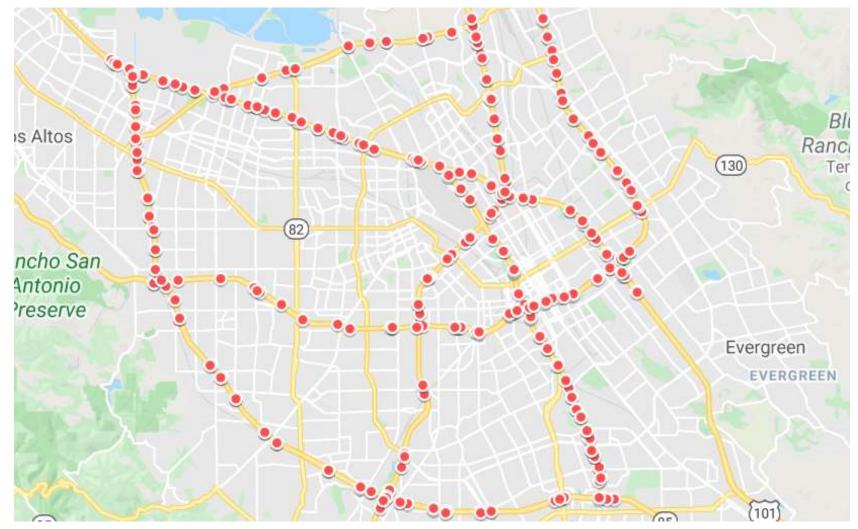
 $G(V, E, X_V, X_E)$ Static structure, static features

 $G(V, E, X_V(t), X_E(t))$ Static structure, time-varying features Spatio-temporal graph

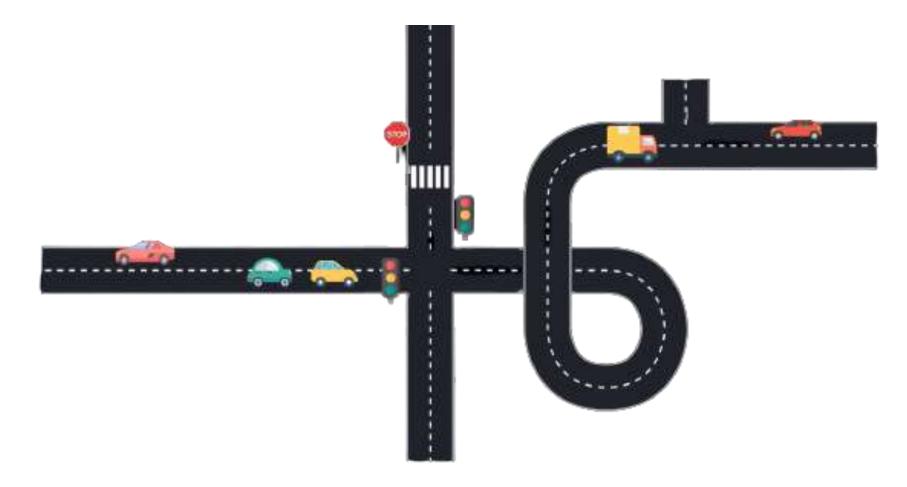
 $G(V(t), E(t), X_V(t), X_E(t))$ Time-varying structure, time-varying features Dynamic graph

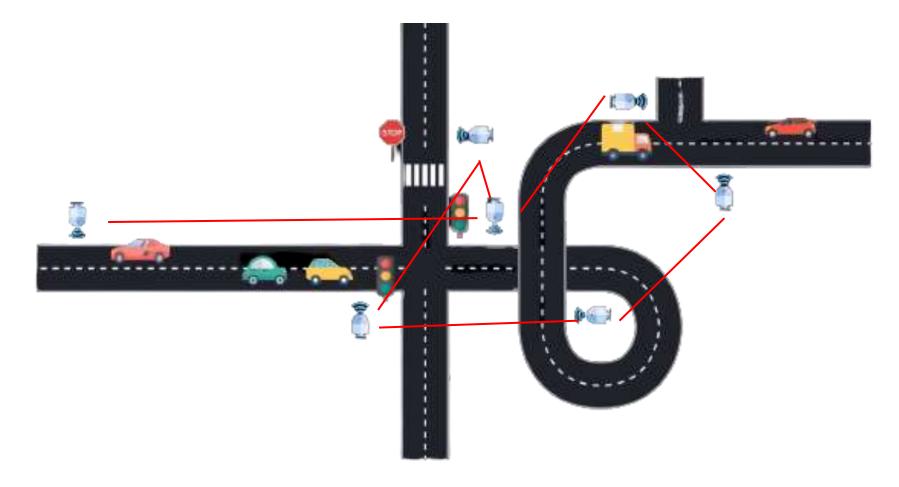


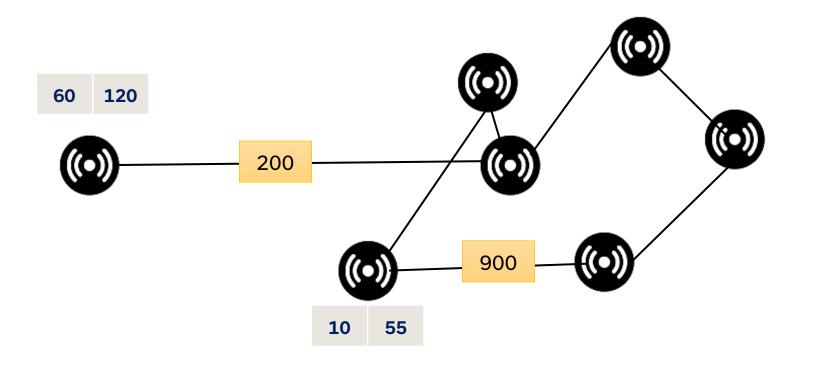
HOW DO WE DEAL WITH GRAPHS WITH STATIC STRUCTURE AND TIME-VARYING FEATURES?

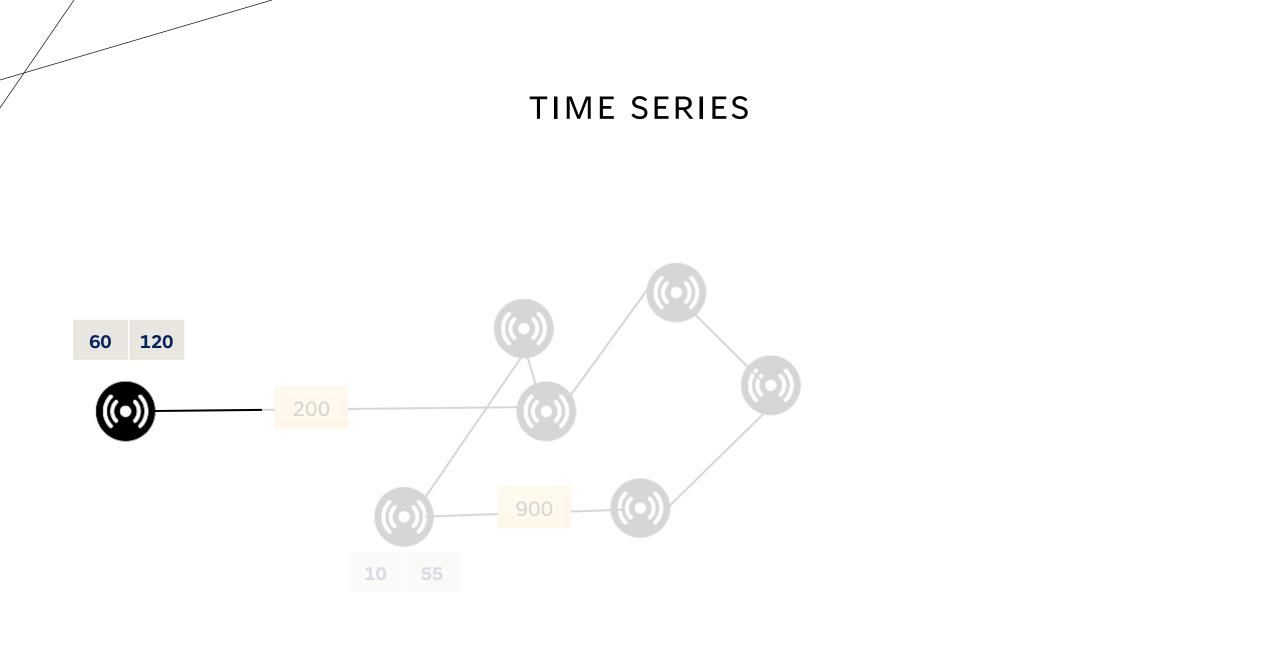


Graph Neural Network









TIME SERIES



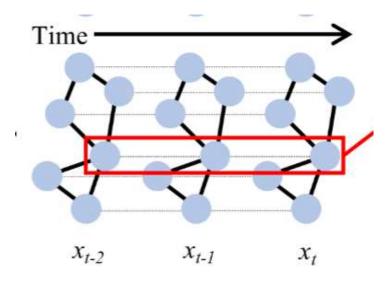
Class.vision

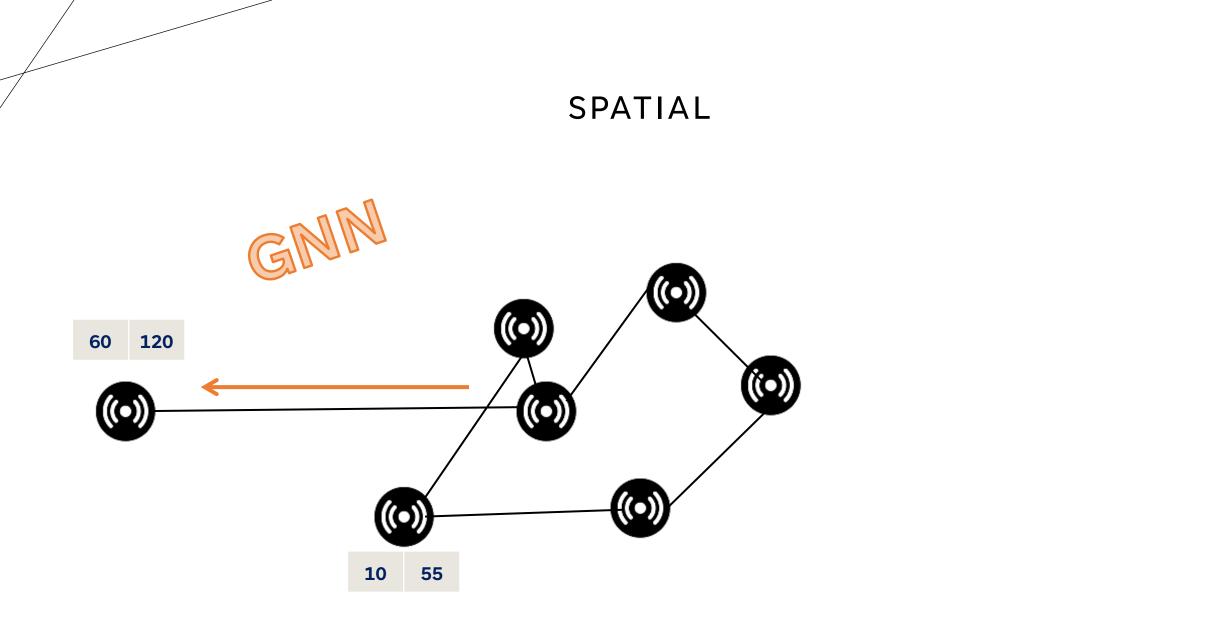
TIME SERIES

THERE ARE SEVERAL EXISTING MODELS FOR TIME SERIES FORECASTING

• Basic models

- ARMA-type models (ARMA, VARIMAX, etc.)
 - Basically multi-linear regression over time
 - Requires "stationary" generating process
- Neural network-based models
 - Recurrent neural networks (LSTM, GRU)
 - Temporal convolutions (see 2016 paper)
 - Temporal attention (see 2019 paper)





STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT, HERE IS AN EXAMPLE IN PSEUDOCODE

```
class STGNN():
    """Processes a sequence of graph data to produce a spatio-temporal embedding
    to be used for regression, classification, clustering, etc.
    """
    def __init__(self):
        # spatial block can be any standard GNN from the literature
        self.spatial_block = GNN()
        # temporal block can be any method for learning over sequences of data
        ## temporal convolution, temporal attention, etc.
        self.temporal_block = TemporalConv()
        self.fc = torch.nn.Linear(F_in, F_out)
```

STGNNS ARE FAIRLY STRAIGHTFORWARD TO IMPLEMENT, HERE IS AN EXAMPLE IN PSEUDOCODE

```
def forward(self, X, A):
  ......
    Args:
    X (array): matrix of node features, X.shape = (B, N, F, T)
    A (array): adjacency matrix (potentially sparse), defines graph structure,
    if non-sparse A.shape = (N, N)
    where
    B = batch size for batch training
    N = number of nodes in the graph
    F = number of features per node
    T = number of previous timesteps we consider
  10 10 11
  tmp = self.temporal block(X)
  tmp = self.spatial block(tmp, A)
  tmp = self.temporal_block(tmp)
  tmp = self.fc(tmp)
```

return tmp

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models

Benedek Rozemberczki* AstraZeneca United Kingdom benedek.rozemberczki@astrazeneca.com

George Panagopoulos École Polytechnique France george.panagopoulos@polytechnique.edu

Oliver Kiss Central European University Hungary kiss_oliver@phd.ceu.edu Paul Scherer University of Cambridge United Kingdom pms69@cam.ac.uk

Alexander Riedel Ernst-Abbe University for Applied Sciences Germany alexander.riedel@eah-jena.de

> Ferenc Beres ELKH SZTAKI Hungary beres@sztaki.hu

Nicolas Collignon Pedal Me United Kingdom nicolas@pedalme.co.uk

ABSTRACT

10 Jun 2021

[cs.LG]

23

We present PyTorch Geometric Temporal a deep learning framework combining state-of-the-art machine learning algorithms for Rik Sarkar The University of Edinburgh United Kingdom rsarkar@inf.ed.ac.uk

ACM Reference Format:

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán López, Nicolas Collignon, and Rik Sarkar. 2021. PyTorch Geometric Tempo-

Yixuan He University of Oxford United Kingdom yixuan.he@stats.ox.ac.uk

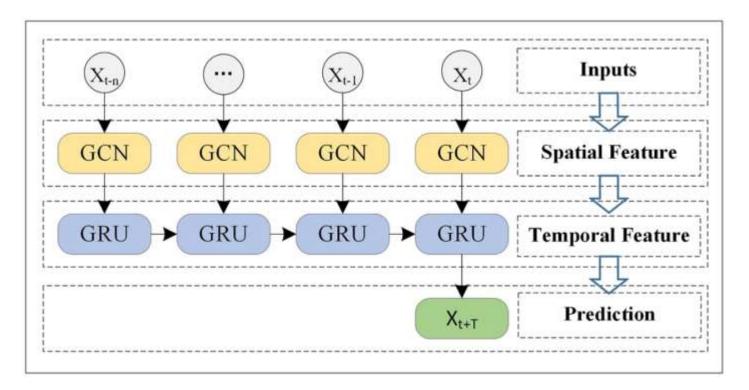
Maria Astefanoaei IT University of Copenhagen Denmark msia@itu.dk

> Guzmán López Tryolabs Uruguay guzman@tryolabs.com

Model	Temporal	GNN	Proximity	Multi
	Layer	Layer	Order	Туре
DCRNN [32]	GRU	DiffConv	Higher	False
GConvGRU [51]	GRU	Chebyshev	Lower	False
GConvLSTM [51]	LSTM	Chebyshev	Lower	False
GC-LSTM [10]	LSTM	Chebyshev	Lower	True
DyGrAE [54, 55]	LSTM	GGCN	Higher	False
LRGCN [31]	LSTM	RGCN	Lower	False
EGCN-H [39]	GRU	GCN	Lower	False
EGCN-O [39]	LSTM	GCN	Lower	False
T-GCN [65]	GRU	GCN	Lower	False
A3T-GCN [68]	GRU	GCN	Lower	False
AGCRN [4]	GRU	Chebyshev	Higher	False
MPNN LSTM [38]	LSTM	GCN	Lower	False
STGCN [63]	Attention	Chebyshev	Higher	False
ASTGCN [22]	Attention	Chebyshev	Higher	False
MSTGCN [22]	Attention	Chebyshev	Higher	False
GMAN [66]	Attention	Custom	Lower	False
MTGNN [61]	Attention	Custom	Higher	False
AAGCN [52]	Attention	Custom	Higher	False

Model	Temporal Layer	GNN Layer	Proximity <mark>Orde</mark> r	Multi Type
DCRNN [32]	GRU	DiffConv	Higher	False
GConvGRU [51]	GRU	Chebyshev	Lower	False
GConvLSTM [51]	LSTM	Chebyshev	Lower	False
GC-LSTM [10]	LSTM	Chebyshev	Lower	True
DyGrAE [54, 55]	LSTM	GGCN	Higher	False
LRGCN [31]	LSTM	RGCN	Lower	False
EGCN-H [39]	GRU	GCN	Lower	False
EGCN-O [39]	LSTM	GCN	Lower	False
T-GCN [65]	GRU	GCN	Lower	False
A3T-GCN [68]	GRU	GCN	Lower	False
AGCRN [4]	GRU	Chebyshev	Higher	False
MPNN LSTM [38]	LSTM	GCN	Lower	False
STGCN [63]	Attention	Chebyshev	Higher	False
ASTGCN [22]	Attention	Chebyshev	Higher	False
MSTGCN [22]	Attention	Chebyshev	Higher	False
GMAN [66]	Attention	Custom	Lower	False
MTGNN [61]	Attention	Custom	Higher	False
AAGCN [52]	Attention	Custom	Higher	False

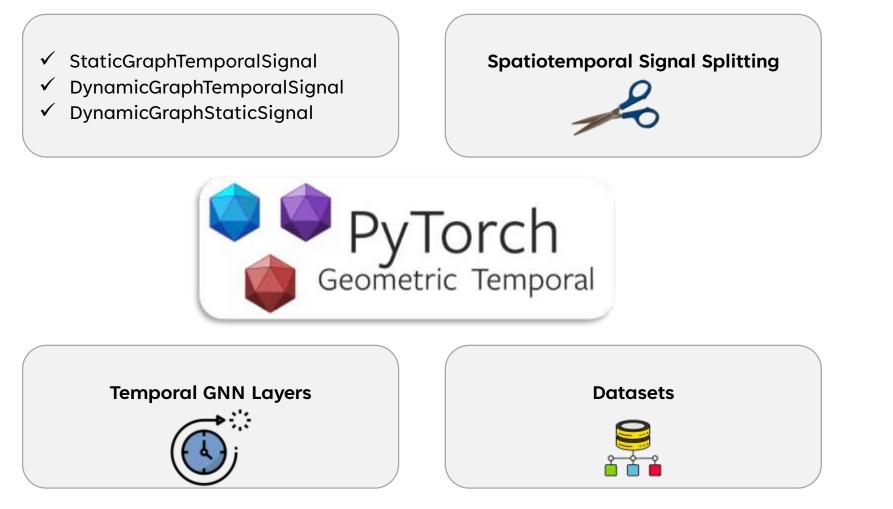
T-GCN:A TEMPORAL GRAPH CONVOLUTIONAL NETWORK FOR TRAFFIC PREDICTION



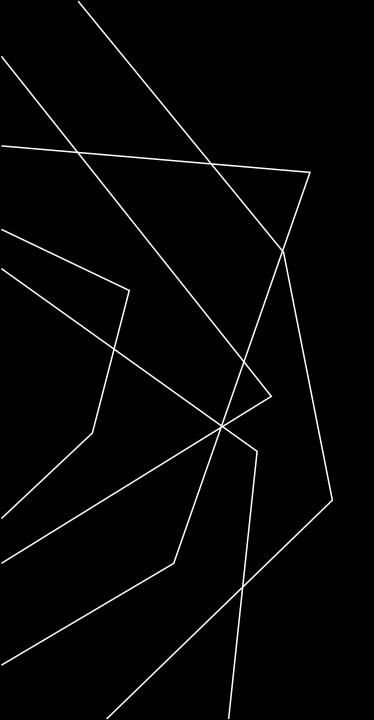
Model	Temporal Layer	GNN Layer	Proximity Order	Multi Type
DCRNN [32]	GRU	DiffConv	Higher	False
GConvGRU [51]	GRU	Chebyshev	Lower	False
GConvLSTM [51]	LSTM	Chebyshev	Lower	False
GC-LSTM [10]	LSTM	Chebyshev	Lower	True
DyGrAE [54, 55]	LSTM	GGCN	Higher	False
LRGCN [31]	LSTM	RGCN	Lower	False
EGCN-H [39]	GRU	GCN	Lower	False
EGCN-O [39]	LSTM	GCN	Lower	False
T-GCN [65]	GRU	GCN	Lower	False
A3T-GCN [68]	GRU	GCN	Lower	False
AGCRN [4]	GRU	Chebyshev	Higher	False
MPNN LSTM [38]	LSTM	GCN	Lower	False
STGCN [63]	Attention	Chebyshev	Higher	False
ASTGCN [22]	Attention	Chebyshev	Higher	False
MSTGCN [22]	Attention	Chebyshev	Higher	False
GMAN [66]	Attention	Custom	Lower	False
MTGNN [61]	Attention	Custom	Higher	False
AAGCN [52]	Attention	Custom	Higher	False

T-GCN: A Temporal Graph ConvolutionalNetwork for Traffic Prediction, Zhao et all

PYTORCH GEOMETRIC TEMPORAL



https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html



THANK YOU

Alireza Akhavanpour

https://Class.vision

CS224W: Machine Learning with Graphs

https://web.stanford.edu/class/cs224w/

Intro to graph neural networks (ML Tech Talks)

https://www.youtube.com/watch?v=8owQBFAHw7E&t=253s

Introduction to graph neural networks (made easy!)

https://www.youtube.com/watch?v=cka4Fa4TTI4

https://www.topbots.com/graph-convolutional-networks/

How to use edge features in Graph Neural Networks (and PyTorch Geometric)

https://www.youtube.com/watch?v=mdWQYYapvR8&list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt7O8Z&index=5